

BESSBOROUGH, CORK

APPENDIX 2

Project Description

VOLUME III | APPENDICES

BESSBOROUGH, CORK

APPENDIX 2

Project Description

- Appendix 2-1 Construction & Environmental Management Plan Phase 1 'The Meadows' prepared by JB Barry and • Partners Limited, Consultant Engineers
- Appendix 2-2 Construction & Environmental Management Plan – Phase 2 'The Farms' prepared by JB Barry and Partners Limited, Consultant Engineers
- Appendix 2-3 Phase 1 'The Meadows' Proposed Site Layout prepared by Shipsey Barry Architects •
- Appendix 2-4 Phase 2 'The Farm' Proposed Site Layout prepared by Shipsey Barry Architects •
- Appendix 2-5 Phase 1 'The Meadows' Primary Planting Plan prepared by Ilsa Rutgers Landscape Architecture •
- Appendix 2-6 Phase 2 'The Farm' Primary Planting Plan prepared by Ilsa Rutgers Landscape Architecture •
- Appendix 2-7 Phase 1 'The Meadows' Services Infrastructure Report prepared JB Barry and Partners Limited, • **Consultant Engineers**
- Appendix 2-8 Phase 2 'The Farm' Services Infrastructure Report prepared JB Barry and Partners Limited, Consultant • Engineers
- Appendix 2-9 Phase 1 'The Meadows' Energy Statement prepared by DKPartnership
- Appendix 2-10 Phase 2 'The Farm' Energy Statement prepared by DKPartnership

 Appendix 2-1 –Construction & Environmental Management Plan – Phase 1 'The Meadows'– prepared by JB Barry and Partners Limited, Consultant Engineers

Client:

Estuary View Enterprises 2020 Ltd.

Project:

Bessborough SHD Development

Report:

Construction & Environmental Management Plan (CEMP)

Document Control Sheet

Client:	Estuary View Enterprises 2020 Ltd.	
Project Title:	Project Title: Bessborough SHD Development	
Document Title: Construction & Environmental Management Plan File Name: 21207-JBB-PH1-XX-RP-C-05001		

Table of Contents	List of Tables	List of Figures	Pages of Text	Appendices
(incl. Y/N)	(incl. Y/N)	(incl. Y/N)	(No.)	(No.)
Y	Ν	Ν	24	

Document Revision			Document Verification				
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
02/02/2022	P01	S3	AO'N	TF	TF	MO'D	N/A
10/02/2022	P02	S3	AO'N	TF	TF	MO'D	N/A
21/02/2022	P03	S3	AO'N	TF	TF	MO'D	N/A
14/03/2022	P04	S3	AO'N	TF	TF	MO'D	N/A
21/03/2022	P05	S3	AO'N	TF	TF	M'OD	N/A

Table of Contents

SECTION 1:	INTRODUCTION	1
1.1	Introduction	1
1.2	Proposed Development	2
SECTION 2:	ROLES AND RESPONSIBILITIES	4
2.1	Client and Contractor	4
2.2	Site Manager	4
2.3	Site Environmental Manager (SEM)	
2.4	Environmental Specialists	
2.5	Training and Induction	
SECTION 3:	CONSTRUCTION WORKS MANAGEMENT	
3.1	Proposed Construction Sequencing	
3.2	Working Hours	
3.3	Cranes and Lifting of Equipment	
3.4	Site Storage	
3.5	Site Safety and Access/Egress	
SECTION 4:	TRAFFIC & TRANSPORTATION MEASURES	
4.1	Introduction	-
4.2	Access Control	
4.3 4.4	Construction Related Traffic Movements	
	Mitigation Measures	
SECTION 5:	AIR QUALITY	
5.1	Introduction	
5.2 5.3	Dust Sources Mitigation Measures	
SECTION 6:	NOISE AND VIBRATION CONTROL MEASURES	
6.1		
6.2	Noise and Vibration Regulations	
6.3	Mitigation Measures	
SECTION 7:	WATER AND WASTEWATER CONTROLS	
7.1	Introduction	
7.1	Mitigation Measures	
SECTION 8:		
SECTION 9:	ARCHAEOLOGY & HERITAGE	
9.1	Pre-construction	. 19
9.2	During Construction	
9.3	Mitigation Measures	. 19
SECTION 10:	WASTE MANAGEMENT	. 20
10.1	Introduction	. 20
SECTION 11:	EMERGENCY PLANNING AND RESPONSE	. 23
SECTION 12:	INSPECTIONS AND MONITORING	. 24

APPENDICES:

Appendix 1: Proposed Masterplan Layout Appendix 2: Proposed Site Plan Appendix 3: Proposed Site Facilities Appendix 4: Proposed Ped/Cycle Bridge Appendix 5: Dust Mitigation Plan

SECTION 1: INTRODUCTION

Introduction 1.1

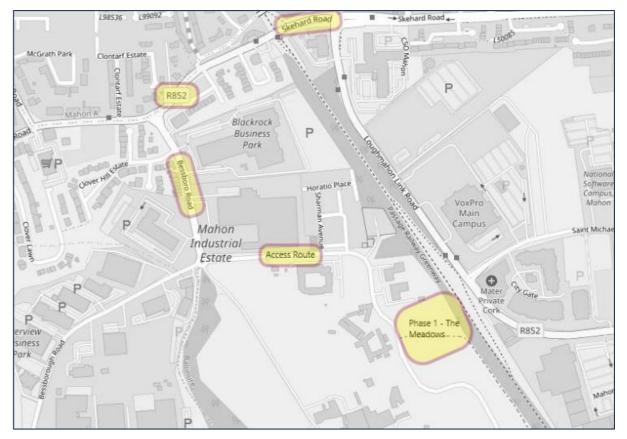
This Construction and Environmental Management Plan (CEMP) has been prepared as part of the planning application for the Bessborough Strategic Housing Development (SHD). The CEMP considers the proposed works associated with the construction of 280 residential units at Bessborough, Ballinure, Blackrock, Cork and will assist with avoiding, reducing, or mitigating construction and environmental impacts arising from the proposed development.

This document has been prepared based on known assessment issues related to construction works management, traffic and transportation measures, air quality, noise and vibration, water and wastewater, landscape management, archaeology, waste management, emergency planning response and inspection and monitoring, all of which are associated with the construction works. This information will be built on prior to commencement of construction in an updated CEMP.

More detailed site-specific measures will be developed and agreed with Cork City Council prior to the commencement of construction works, subject to a successful planning application. The final CEMP will take into account any conditions attached to a grant of planning permission.

The Phase 1 application represents one of two phases of the development proposed by Estuary View Enterprises 2020 Ltd, for which planning permission is being sought from An Bord Pleanála under the Strategic Housing Development legislation. Zoning differences across the site have necessitated a dual approach being adopted to applying for planning permission, see Fig.1.1 below, including highlighted location of Phase 1. The area for Phase 1 is zoned under ZO4 – Residential, Local Services and Institutional Uses & SE4 – Landscape Preservation Zone. This CEMP details requirements for Phase 1 'The Meadows' and a separate document, 21207-JBB-PH2-XX-RP-C-05002 Construction & Environmental Plan, has been prepared for the proposed Phase 2 development, 'The Farm'.

Page 1


Figure 1-1: Zoning Differences across the proposed site (Cork City Development Plan 2015-2021)

Proposed Development 1.2

1.2.1 Existing Site

The application site is in Bessborough, Ballinure, Blackrock, considered within the south-eastern suburbs of Cork City as defined in the Cork City Development Plan 2015-2021. Access to/from the site is via an existing access road, Bessborough Road. Bessborough Road joins the wider road network at the junction with Skehard Road. Access to the site is by means of the existing access road serving Bessborough Day Care Centre and Bessborough Castle Folly. The existing development lands currently accommodate grasslands, and the site is predominately greenfield. Nearby buildings include Bessborough Day Care Centre to the north, Cork Community Mediation Service and the Bessborough Centre to the West.

The surrounding lands are predominantly a mix of residential, parklands and commercial/industrial buildings at Mahon Industrial Estate. There have been several residential developments north of the proposed site, close to the Mahon Industrial Estate, in recent years, one of which is currently at construction stage.

Figure 1-2: Site location and Access Route

1.2.2 Proposed Development Site Overview

The overall proposed development is ultimately intended to comprise 420 residential units with two creches, a café, tenant amenities, landscaping, pedestrian/cycleway infrastructure and associated site development works located on lands bounded by the N40, Bessborough Road, the Passage West Greenway and the Ballinure amenity walk.

Permission for the first two phases of the proposed development is being sought under two separate SHD planning applications. These two applications are named as Phase 1 The Meadows and Phase 2 The Farm. Further development of the site is to include Phase 3 North Fields, subject to appropriate zoning for this

portion of the overall lands, and this Phase 3 area is shown in the masterplan layout. See Appendix 1 for the proposed masterplan layout.

1.2.3 Proposed Development - Phase 1 'The Meadows'

This CEMP is prepared for the Phase 1 element of the development. The development will consist of the construction of a residential development of 280 no. residential apartment units with supporting tenant amenity facilities, café, crèche, and all ancillary site development works. The proposed development includes 280 no. apartments to be provided as follows: Block A (6 no. studio apartments, 14 no. 1-bedroom, 34 no. 2-bedroom & 1 no. 3-bedroom over 1-6 storeys), Block B (37 no. 1-bedroom & 49 no. 2-bedroom over 6-10 storeys), Block C (31 no. 1-bedroom, 36 no. 2-bedroom & 6 no. 3-bedroom over 5-9 storeys) and Block D (30 no. 1-bedroom, 31 no. 2-bedroom & 5 no. 3-bedroom over 6-7 storeys).

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas.

The proposed development provides for outdoor amenity areas, landscaping, under-podium and street car parking, bicycle parking, bin stores, 2 no. substations one of which is single storey free standing, a single storey carpark access building, public lighting, roof mounted solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road (See Appendix 2).

ROLES AND RESPONSIBILITIES SECTION 2:

Client and Contractor 2.1

The Applicant will be responsible for ensuring that an appropriate Environmental Management Framework is adhered to, that competent parties are appointed to undertake construction and that sufficient resources are made available to facilitate the appropriate management of risks to the environment.

As part of the Environmental Management Framework, the Building Contractor will need to comply with all relevant environmental legislation, take account of published standards (ISO14001) and relevant documentation including the Environmental Impact Assessment Report (EIAR), any planning conditions from An Bord Pleanala (ABP), this CEMP and the subsequent detailed CEMP. Regarding the subsequent detailed CEMP, the Applicant is responsible for ensuring that this is developed in consultation with the design team and the local authority.

The Building Contractor is also responsible for ensuring that all members of the Project Construction Team, including sub-contractors comply with the procedures set out in the CEMP, including following any specific requirements set-out in the EIAR. The Contractor appointed will be responsible for the organisation, direction and execution of environmental-related activities during the construction of the proposed development. In addition, they will ensure that all persons allocated specific environmental responsibilities are notified of their appointment and confirm that their responsibilities are clearly understood.

2.2 Site Manager

A Site Manager will be appointed by the Contractor to oversee the day-to-day management of the site and ensure that effective, safe and planned construction activities are delivered on an ongoing basis to the highest standards. The Site Manager will be competent, suitably gualified and an experienced professional that will oversee site logistics, communicate regularly with construction staff, accommodate project-specific inductions for staff on-site and ensure that all work is complaint with the relevant design standards and health and safety legislation.

Site Environmental Manager (SEM) 2.3

A Site Environmental Manager will be appointed by the Contractor to ensure that the CEMP is effectively implemented. The Environmental Manager will be suitably qualified and competent. The responsibilities of the SEM include, but are not limited to:

- Preparing, maintaining and implementing the CEMP
- Completing site inspection and environmental compliance reports Providing guidance for the site team in dealing with environmental matters, including legal and statutory
- requirements affecting the works
- Reviewing environmental management content of method statements where relevant
- Reporting environmental performance to the Site Manager
- Liaising with statutory and non-statutory bodies and third parties with an environmental interest in the proposed development.
- Conducting regular environmental inspections as specified in the contract and checking adherence to the CEMP
- Keeping up-to-date with relevant environmental best practice and legislative changes Ensuring all personnel have undertaken adequate environmental inductions, awareness briefings sand
- training (including sub-contractors)
- Dealing with environmental complaints
- reported in an appropriate manner.

Managing and responding to environmental incidents and ensuring that all incidents are recorded and

2.4 Environmental Specialists

Where relevant, and to fulfil obligations under the CEMP, the Contractor will be responsible for engaging suitably qualified specialists including (where necessary):

- Project archaeologist
- Project ecologist
- Project arborist
- Noise and vibration specialist
- Air Quality and dust specialist
- Land, soils and contamination specialist; and
- Water specialist

Training and Induction 2.5

2.5.1 Site Induction

All personnel involved in the proposed Phase 1 development will receive environmental awareness training. The environmental training and awareness procedure will ensure that staff are familiar with the principles of the CEMP, the environmental aspects and impacts associated with their activities, the procedures in place to control these impacts and the consequences of departure from these procedures.

2.5.2 Specific Training and Awareness Raising

A project specific training plan that identifies the competency requirements for all personnel allocated with environmental responsibilities will be produced by the Contractor. Training will be provided by the Contractor to ensure that all persons working on site have a practical understanding of environmental issues and management requirements prior to commencing activities. A register of completed training is to be kept by the SEM. The Site Manager will ensure that environmental emergency plans are drawn up and the SEM will conduct the necessary training/inductions.

CONSTRUCTION WORKS MANAGEMENT SECTION 3:

3.1 Proposed Construction Sequencing

The development of Phase 1 'The Meadows' will include the construction and completion of 280 no. residential units comprising 4 apartment blocks and all ancillary works. Prior to any construction works being carried out, the proposed development will initially involve some site clearance and earthworks in order to clear and grade the site to accommodate the construction of all associated engineering works and subsequently the building foundations.

This will involve the delivery of machinery, site equipment/plant and materials and the removal of some material off-site. Any material that can be reused later in the construction process will be stockpiled in an appropriate location; this will reduce the number of vehicular movements on the public roads. Once the site access, parking and compound facilities are established, the main haulage of materials to the site will include stone, concrete, blocks, steel and other building materials. Appropriate traffic management measures will be provided to minimise the impact of construction traffic on the local road network as detailed in Section 4 below.

An indicative construction sequence is outlined below to illustrate the buildability of the project. This should be read in conjunction with Appendix 3 which illustrates the location of the site access, staff compound, staff parking, location of ped/cycle bridge, the construction runoff silt trap and wheel wash facility.

The actual construction sequence will be confirmed when any conditions of planning are received, and construction appointments confirmed.

To develop the complete site for Phase 1, the following works will be required to be carried out:

- Provision of a temporary construction access from the existing Bessborough Road into the site (at the facilities for workers and the erection of temporary boundary fencing.
- Measures to reduce the potential risk of impacts to retained trees.
 - Creation of a storage area for surplus plant and materials.
- Creation of a site batch concrete area.
- towards natural vegetation and Cork Harbour estuary watercourse.
- Trenching for underground services including foul sewer, surface water drainage including attenuation, water mains, gas, telecommunications, electricity and lighting.
- the existing down ramp from Mahon to the greenway.
- Construction and connection of underground services to existing underground services.
- this installation work.
- Surface water connection will be made to an existing surface water sewer in the south-western area of the site
- Watermain connections will be made to the existing watermain in Bessborough Road.
- standing area will be completed without an approved storm outfall.
- Excavation and concrete works for strip and pad footing foundations.
- Piling to some blocks, likely to be bored piles with in-situ concrete and rebar infilling.

BARRY

location of the proposed permanent entrance), safe and secure site compound including welfare

Creation of silt traps at the low point to the south of the construction site to prevent construction runoff

Construction of a new pedestrian/cycle bridge over the existing Passage West Greenway and linking to

Foul sewer connection will be made across the Ballinure walkway to the west of the site to connect to the existing wastewater pumping station close to the western boundary of the site. The final section of the foul sewer connection to the existing Ballinure wastewater pumping station will be made using directional-drilling methods (and not open-cut trenching) to maintain the integrity of the existing boundary wall to the estate and to allow the walkway to remain in use while these works proceed. A pipe jacking chamber will be constructed on the eastern side of the existing boundary wall to facilitate

No dwelling unit will be occupied prior to the completion of an approved foul sewer outfall and no hard-

- Construction of the apartment buildings, plant and storage areas, likely to be constructed in reinforcedconcrete frames.
- Construction of ancillary site works including the provision of 2 substations, outdoor amenity area, landscaping, 102 car parking spaces, 10 motorbike spaces, 604 bicycle parking spaces, bin stores, public lighting and all supporting site development works.
- Erection of permanent boundary fencing, landscaping and lighting.

It is estimated that the construction stage of Phase 1 will take 24 months to complete.

Working Hours 3.2

It is envisaged that normal working hours will be between 7:00am and 6:00pm, Monday to Friday and 8:00am to 2:00pm on Saturdays, subject to any conditions set down by An Bord Pleanála/Cork City Council. No working will be allowed on Sundays or Bank Holidays. Subject to the agreement of the local authority, out-of-hours working may be required for water main connections, foul drainage connections, tower crane erection and removal etc. Any such arrangements will be agreed at construction stage.

3.3 Cranes and Lifting of Equipment

The proposed build method for the apartment blocks is likely to be as a reinforced concrete (RC) frame. Tower cranes and concrete placing booms will be required to erect the RC frame. A combination of goods hoists and telehandlers will offload and distribute materials for the construction and finishing trades.

Craneage will be required for the installation of the main structure of the pedestrian/cyclist bridge.

All lifting equipment and appliances will carry current test certificates and be inspected prior to use. Trained and competent bankmen will attend the cranes.

Road Closures may be required for a short period to enable the tower crane to be transported to/from site. The appropriate approvals and permits for any road closures will be applied for and agreed with Cork City Council. All relevant stakeholders will be kept informed of any such closures.

3.4 Site Storage

Due to the site restrictions, the storage of materials on site will be kept to the minimum. A construction programme will be developed to ensure that no large materials will be required to be stored on-site until they are needed. Materials such as glazing and cladding systems will be delivered in batches and loaded evenly on the required floors. Throughout the project, storage of materials outside the site boundary will not be permitted.

Site Safety and Access/Egress 3.5

A construction site compound and staff parking area will be set up before any construction works start onsite. Hoarding and boundary fencing will be erected to delineate all site works and separate same from the surrounding public areas located adjacent to the development. Appendix 3 illustrates the likely site compound and staff parking areas.

Appropriate management of the transport operations will be applied throughout the construction process. As the proposed car park for site staff may be located away from the site compound, there will be appropriate pedestrian facilities between the two which will segregate pedestrians from moving traffic and give priority to pedestrians at any crossing points. A detailed Construction Traffic Management Plan will be prepared by the Contractor and submitted to the Planning Authority prior to the commencement of any construction.

The construction of the bridge structure over the greenway will require work on both sides of the proposed structure to install abutments/landing areas for what is likely to be a steel structure which is fabricated offsite and delivered and erected on site by crane in a single operation. The construction of a suitable abutment structure/landing area on the eastern side of the greenway will require temporary closure of the access ramp into which the bridge connects and the timing and sequencing of this work will be agreed with Cork City Council. The impacts on the use of the greenway will be limited in extent and significance for this stage of the works.

During the construction of the bridge, a closure will be required to construct the bridge supports and lift the bridge into place. When the pre-fabricated bridge structure is being lifted into place there will be a requirement to close the greenway and ramp access to allow this work to proceed safely. This closure is likely to be for a limited period only and again the details of such a closure will be agreed with Cork City Council in advance of construction work commencing on the development. Appropriate diversions will be in place from both the Blackrock and Rochestown side, using the facilities around the Mahon Retail Park. Travelling from Blackrock, users will exit the greenway at the Mater Hospital ramp and use the facilities on the R852 and re-join the greenway prior to the N40 overbridge. From the Rochestown direction, the reverse of the above route will enable users to continue their journey during the bridge construction.

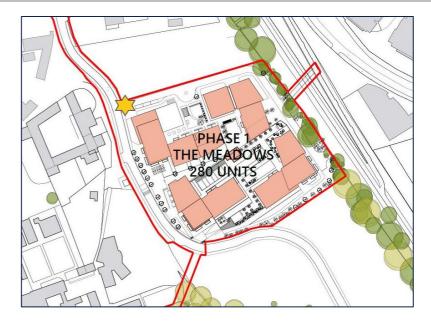
Security of the site is an important issue with respect to restricting site entry to personnel solely involved in the construction process during working hours and preventing unauthorised access out of hours. Site access for all personnel and visitors will be strictly controlled and all visitors will report to the site office prior to entering the construction area.

TRAFFIC & TRANSPORTATION MEASURES SECTION 4:

4.1 Introduction

Chapter 5 of the EIAR and the Traffic and Transport Assessment (TTA) and Mobility Management Plan (MMP) prepared by MHL Consulting Engineers has not identified any significant potential impacts in respect of traffic during the construction phase:

- In general, the impact of the construction traffic will be temporary in nature and less significant than the final development operational stage'.
- 'The surrounding road network is suitable to accommodate the construction traffic associated with the proposed development'.


It is outlined in the TTA that a detailed Construction Traffic Management Plan (CTMP) will be prepared by the successful contractor in consultation with Cork City Council Roads and Transportation Department.

The principal objective of the CTMP is to ensure that the impacts of all building activities generated during the construction phase upon the public (off-site), visitors to the subject site (on-site) and internal (on-site) workers environment are fully considered and proactively managed/programmed, thereby ensuring that safety is maintained at all times, disruption is minimised, and that works are undertaken within a controlled, hazard-minimised environment.

4.2 Access Control

The proposed construction site is located off the access road which serves existing buildings including the Bessboro Day Care Centre and the Cork Community Mediation Service. See Figure 4.1. The proposed development is approximately 750m from the junction of Skehard Road and Bessboro Road. This is the main access point from the wider road network and will form the preferred haulage route to/from the site in agreement with Cork City Council. The geometry of the access route is appropriate for construction traffic and HGVs. A number of nearby residential developments were recently completed or are currently under construction and would have used the same access route, up to a point, for this development.

It is anticipated that heavy goods vehicles, HGVs, will be restricted to off-peak times on the local road network to reduce the impact on the road network during the morning and evening peaks. It is expected that HGV movements and general deliveries will otherwise arrive/leave throughout the day at a steady rate.

Figure 4-1: Proposed Construction Site Access

Appropriate signage for the site will be provided on the approach routes to provide clarity for construction vehicles, particularly deliveries who may not be familiar with the site location. This will provide wayfinding for drivers and limit the number of turning manoeuvres outside the site.

The following section includes a range of mitigation measures to minimise the construction traffic generation, ensure the safety of the workforce on the site and accessing the site, and ensuring the safety of the public on the surrounding roads.

Construction Related Traffic Movements 4.3

The demolition, site clearance, piling and general construction activities will generate a level of vehicle movement to and from the site as well as internally within the subject site.

The typical construction trips generated during site clearance and construction comprise:

- Construction employees arriving and leaving work
- Deliveries and removal of machinery; and
- Delivery and removal of materials.

Appropriate measures will be put in place to ensure safe access to/from the site. Measures will also be implemented on-site to ensure safe manoeuvres can be carried out within the construction site. An employee car park will be located within the Applicant's lands with a dedicated pedestrian route to the to the site accommodation. There will be designated areas on site for loading/unloading and a specified storage area for materials and machinery. A waste and recycling area will be established within the construction site boundary, close to the construction access, to prevent unnecessary trips through the site for collection. To ensure that the internal site routes and the public road to the construction site entrance is kept in good condition, a wheel washing facility will be located close to the exit from the construction area to minimize mud and dust.

The level of construction traffic throughout the working day is expected to be low to moderate, the highest volume of vehicles is expected when workers arrive to and leave work. Generally, workers are expected to travel by private vehicle and public transport. It is expected that there will be a typical average of approximately 80 no. construction employees on site during Phase 1 works.

Deliveries and HGV movement numbers are expected to be low to moderate and evenly spread throughout the day. The HGV traffic is expected to be greater during the initial stage of the development as larger machinery and materials will be delivered. This will, however, reduce as the construction of the buildings advance.

Deliveries of materials to site will be planned to avoid high volume periods where possible, particularly the AM peak hour. There may be occasions, however, when it is necessary to have deliveries within these periods. As previously stated, the Contractor will develop, agree and submit a detailed Construction Traffic Management Plan to the local authority for approval prior to commencement of construction works. The following section details some of the mitigation measures to be included in the detailed CTMP.

Mitigation Measures 4.4

A competent traffic co-ordinator and banksmen will be appointed by the contractor to oversee the following control measures which will be implemented as part of the final CTMP to reduce the risks associated with construction traffic. Some of the following measures also tie in with mitigation measures for dust and noise.

- A detailed site plan/layout of the construction site will be developed to identify locations for site offices/storage areas/waste management areas etc.
- Entrances and exits separate entry and exit gateways will be provided for pedestrians and vehicles with a gate attendant employed to interface with the traffic and public to facilitate safe access and earess of vehicles.
- Where employees will need to cross the carriageway, a clearly signed and lit crossing point will be . provided where drivers and pedestrians can see each other clearly.
- Visibility - the site operator will ensure that drivers driving out onto the public road have the appropriate visibility splays.
- All public and private walkways will be maintained free of obstructions •
- All operators of construction machinery and vehicles will be trained and competent and have valid . CSCS cards.
- All site staff will be made aware that there are residents and employees in the surrounding areas using the access road.
- Approach signage with good sightlines will be provided at the site access route and site entrance. •
- . Traffic management procedures will be communicated to suppliers and workers.
- Deliveries to site will be planned to arrive during working hours only, save for exceptional loads for which a detailed plan will be agreed with the local authority...
- The access route to the construction site entrance and internal site routes will be kept in good . condition and clear of obstructions.
- The contractor will put measures in place to mitigate any excessive noise for nearby properties that may be created during construction activities.
- Internal trafficked areas will be watered twice daily on dry days to reduce dust, if required. Vehicles • delivering or collecting material with dust potential will be covered with tarpaulin at all times to restrict the escape of dust.
- A stringent 'clean as you go' policy will be implemented on site to ensure no loose material is left on the ground within the construction access road and the public road.
- Vehicle wheel washing facilities will be in place for vehicles leaving the construction site area.
- A road sweep will be deployed if necessary to ensure the site access route between the site access . and the Skehard Road junction will be kept clean at all times.
- Construction materials or equipment will not be stored outside the site boundary. .
- Pedestrian/vehicular routes, crossing points, parking, loading and vehicle only areas will be clearly marked, signposted and segregated as appropriate.
- Where required site vehicles will be fitted with appropriate audible and visual devices.
- Loading and unloading will be carried out in a designated area within the construction site boundary . and reversing activities will be kept to a minimum.
- Loads will be checked prior to unloading and loads will be adequately secured for travel.

- and unloading.
- site.
- within the construction site area.
- manufacturer will be worn when operating equipment.

Visitors to site will be accompanied and a safe area will be provided for visiting drivers during loading

Speed limits signage will be used to control speeds on the access route and within the construction

Construction vehicles and machinery will be maintained in good condition by a competent person as per the manufacturer's instructions. A dedicated area for maintenance work will be provided

All operators will wear personal protective equipment on-site and seat belts where fitted by the

SECTION 5: AIR QUALITY

5.1 Introduction

As construction activities are likely to generate some dust emissions, dust management requirements will be developed and implemented as part of the detailed Dust Mitigation Plan during the construction phase of the project. The potential for dust to be emitted depends on the type of construction activity being carried out, the dust controls in place and also the weather conditions, such as the level of rainfall, wind speed and direction.

A preliminary Dust Management Plan has been prepared by the DK Partnership as part of the Environmental Impact Assessment Report (EIAR) for the project and this plan is attached as Appendix 5 of this document for information purposes.

Dust Sources 5.2

The potential impact for dust depends on the distance to potentially sensitive locations, such as neighbouring residential and commercial properties in this case. The main activities that give rise to dust emissions during construction include the following:

- Excavations and Piling
- Materials handling and storage
- Temporary stockpiling of any earthworks material for re-use
- Movement of vehicles, particularly HGVs.

The mitigation measures set out below will be put in place during the construction phase. The level of dust control to be implemented will depend on the weather conditions, the specific construction activities (e.g. earthworks activities, construction activities and site vehicle movements) and the potential for dust nuisance as a result of those activities.

Mitigation Measures 5.3

Mitigation measures for dust control will include:

- The contractor shall prepare a dust minimisation plan which shall be communicated to all staff.
- Internal trafficked areas will be watered twice daily on dry days to reduce dust if required. Vehicles delivering or collecting material with dust potential will be covered with tarpaulin at all times to restrict the escape of dust.
- A stringent 'clean as you go' policy will be implemented on site to ensure no loose material is left on the ground within the construction access road and the public road.
- Vehicle wheel washing facilities will be in place for vehicles leaving the construction site area.
- Bessboro public road will be inspected daily for cleanliness and a road sweep will be deployed if necessary to ensure the site access route between the site access and the Bessboro Road/Skehard Road junction will be kept clean at all times.
- Topsoil stockpiles will be located in a location so as not to necessitate double handling and topsoil stockpiles will be seeded to promote grass growth and reduce dust.
- Material handling systems and site stockpiling of materials will be laid out to minimise exposure to wind.
- Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods.
- Further mitigation measures are outlined in the preliminary Dust Management Plan prepared by the DK Partnership, see Appendix 5.

SECTION 6: NOISE AND VIBRATION CONTROL MEASURES

Introduction 6.1

In order to minimise the noise impact on the adjoining community, creche and residential properties it is proposed that heavy equipment and machinery including piling drills (if required), construction vehicles and generators only work between the hours detailed above. In addition, no deliveries and/or removal of materials will occur outside of these hours, save for exceptional situations when permissions will be sought from the Local Authority.

Normal working hours are outlined in Section 3.2 above, however these will be subject to detailed agreement with Cork City Council prior to commencement.

On occasions it may prove necessary to carry out construction activities outside of normal working hours. In such instances prior consultation will be carried out with Cork City Council, local residents, and businesses outlining the nature and reason for the works and their likely duration.

6.2 Noise and Vibration Regulations

During the works the contractor shall comply with the requirements of BS 5228-1:2009+ A1:2014 and BS 5228-2:2009 +A1:2014 (Code of Practice for Noise and Vibration Control on Construction and Open Sites) as well as Safety, Health and Welfare at Work (General Applications) Regulations 2007 Noise and Vibration.

Noise Limits

Noise limits to be applied for the duration of the construction works are as set out in BS 5528. This applies a noise limit of 70dBA between 07:00 and 19:00 outside the nearest window of the occupied room closest to the site boundary in suburban areas away from main road traffic and industrial noise.

For the duration of the construction works, a daytime noise limit (07:00 to 19:00) of 70 dBA shall apply (in accordance with BS 5228).

Vibration Limits

Vibration limits to be applied for the duration of construction works are as set out in BS 5228 (Code of Practice for Vibration Control on Construction and Open Sites) and BS 7385:1993 (Evaluation and measurement for vibration in buildings Part 2: Guide to daameg levels from ground borne vibration). Allowable vibration during the construction phase is summarised below in Figure 5.1.

Allowable vibration (in terms of peak particle velocity) at the closest part of sensitive property to the source of vibration, at a frequency of ^a					
Less than 4Hz¤	15 to 40Hz¤	40Hz (and above)¤			
12 mm/sa	12.5 mm/sa	50 m m/sa			

Figure 6-1: Guidelines for Allowable Vibration

6.3 Mitigation Measures

In particular, the following practices are to be implemented during the construction phase:

- are permitted
- in proximity to noise sensitive receivers

Limiting the hours during which site activities that are likely to create high levels of noise and vibration

Erection of a barrier along the site boundary (e.g. standard 2.4m high construction hoarding) to remove direct line of sight between noise sources and receiver when construction works are being carried out

- Establish channels of communication between the contractor, local authority and local businesses and residents
- Appoint a site representative (SEM) responsible for matters relating to noise
- Selection of plant with low inherent potential for generation of noise
- Siting of noisy plant as far away from sensitive properties as permitted by site constraints and implementation of noise reduction measures such as acoustic enclosures when required
- Avoidance of unnecessary revving of engines and switching off of plant when idle
- All plant and equipment will be maintained in good working order in accordance with BS.5228 in order to minimise air and noise emissions.
- All ancillary pneumatic percussive tools shall be fitted with mufflers or silencers of the type recommended by the manufacturers, and where commercially available, dampening tools and accessories shall be used.
- Noise monitors will be erected and data collected to assess sound levels.
- Ear protection zones will be established and all personnel will be trained on ear protection.

SECTION 7: WATER AND WASTEWATER CONTROLS

Introduction 7.1

All works carried out as part of these works will comply with all Statutory Legislation including the Local Government (Water Pollution) Act, 1977 and 1990 (as amended) and the contractor will cooperate in-full with Irish Water and the Environmental Department of Cork City Council. There is no immediate watercourse in the vicinity of the site. The Douglas Estuary is located south of the site on the southern side of the N40.

The following description outlines the proposed water/wastewater works to be carried out during Phase 1:

- Surface Water The proposed surface water network will include a drainage pipe network, attenuation of The Meadows development to facilitate this connection.
- immediately to the south-west of The Meadows development to facilitate this connection.
- the development is to be made to this existing main.

The mitigation measures outlined below provide the water management controls required to be implemented by potential Contractors and Sub-contractors and set out the proposed procedures and operations to be utilised on the proposed development to mitigate against any water related environmental impacts. The mitigation and control measures outlined herein will be employed on site during the construction phase of the development.

The main areas of water related concerns covered by this section are:

- Pre-Construction (Inc Site Clearance/Tree felling)
- Construction Phase drainage controls
- Earthworks (i.e. infrastructure & drainage) and surface water quality protection
- Temporary stockpiles water management and controls; and
- Fuel usage, storage and management.

Mitigation Measures 7.2

Surface water runoff during site clearance and construction stage can be potentially contaminated. The most likely forms of contamination are 'siltation' and spillage. Siltation occurs when soil and particulate matter are washed away in rainfall events by rainwater. Siltation will be mitigated on the project using stilling basins and strainers within the site to prevent silt being lost to the drainage network.

Excavation, Erosion and Sediment Control

BARRY

- siltbuster)
- as long as is practical
- Delay clearing and topsoil stripping of each area until work is ready to proceed.

storage and SuDS features. The restricted discharge from the site will be conveyed in a new surface water pipe laid from the western boundary of the Meadows in a westerly direction across the Bessborough site to connect to an existing 750mm diameter surface water sewer upstream of its connection to the 1350mm diameter surface water pipe which discharges to the Douglas Estuary south of the N40. A legal wayleave is in place across the Bessborough lands immediately to the south-west

Foul Drainage - Wastewater collection within the proposed development will be via a network of 150mm and 225mm diameter gravity sewers, which will direct the flows to the southwest corner of the site. A new gravity sewer will then convey the flows in a westerly direction and will connect directly to the Bessborough wastewater pumping station. A legal wayleave is in place across the Bessborough lands

Potable Water - A 150mm diameter ductile iron watermain is located in the existing road that forms the eastern boundary of The Meadows development. Irish Water have advised that the connection to serve

Measures will be implemented to capture and treat sediment laden water run off (e.g. silt traps;

The area of exposed ground will be minimised and as much vegetation as possible will be retained for

- Close and backfill trenches as soon as practically possible
- Any earthworks temporary stockpile areas will require silt fencing to be installed.
- Any on-site settlement areas are to include geotextile liners and riprapped inlets and outlets to prevent scour and erosion
- Surface water runoff from areas stripped of topsoil and surface water collected in excavations will be directed to on-site settlement areas, at the lower, south west end of the site, where measures will be implemented to capture and treat sediment laden runoff prior to discharge of surface water at a controlled rate.
- Surface water discharge points during the construction phase are to be agreed Cork City Council's Environment Section prior to commencing works on site.

As fuels and oils are required during construction stage, it is necessary to mitigate the possibility of there being an accidental leakage of these liquids. All fuels stored on site will be bunded and all chemicals will be stored in an appropriate tank. Should any spillage occur on site during construction, it is likely that there will be a localised moderate impact in the short term on the environment.

Accidental Spills and Leaks

- All oils, fuels, paints and other chemicals will be stored in a secure bunded hardstand (impervious) area
- Refuelling and servicing of construction machinery will take place in a designated hard stand area which is also remote from any surface water inlets.
- A response procedure will be put in place to deal with any accidental pollution events and spillage kits will be available and construction staff will be familiar with the emergency procedures and use of equipment.

Concrete

- Concrete batching will take place on-site and offsite. Wash down and wash out of concrete trucks will take place off site and any excess concrete will not be disposed of on site
- Pumped concrete will be monitored to ensure there is no accidental discharge
- Mixer washings are not to be discharged into surface water drains and will be directed to settlement areas.

Wheel Wash Areas

 Discharge from any vehicle wheel wash areas is to be directed to onsite settlement areas, debris and sediment captured by vehicle wheel washes are to be disposed off-site at a licensed facility.

Through consultation with the Site Manager (SM) /Site Environmental Manager (SEM), a schedule for surface water quality monitoring will be drawn up. This will be finalised prior to the start of construction. Where monitoring parameters are found to exceed the standards laid down, the SM/SEM will initiate and report corrective actions. This may necessitate the alteration of the environmental control measures and in turn the relevant construction method statement.

It is proposed to implement a programme for monitoring water quality at the outfall tie-in as part of the construction of this development, in agreement with the Planning Authority. This programme and sampling requirements will be agreed with Cork City Council.

LANDSCAPE MANAGEMENT SECTION 8:

During Phase 1 construction, site security fencing and solid hoarding will be used where appropriate to restrict visibility, minimise noise pollution and restrict visibility into the site, minimising the temporary landscape and visual impacts. There is a significant area of existing vegetation/trees to the south and east of the site and along the routes of foul and surface-water outfall/connections. These areas will require protection measures to be employed during construction works, particularly during the construction of the bridge and foul and storm drainage outfalls. It is expected that approximately thirteen trees will be required to be removed as part of the development of this phase.

The mitigation measures set out below will be implemented to minimise the impact on any trees/vegetation.

Although the removal of some trees will be required for the construction of the pedestrian/cycle bridge and the trenching and construction of watermains, foul and surface-water drainage, such tree removal will be restricted to that identified for removal in the application.

- Statement is required.
- area of any tree to be retained and the measures outlined shall be strictly enforced on site.
- construction. Recommendations and any further agreed procedures.
- Council.
- Reinstatement of trees and vegetation will be undertaken by a suitably qualified landscape contractor.

All mitigation measures to be put in place to protect such trees and vegetation shall be prepared in consultation with a qualified Arborist, who shall supervise works for which an Arboriculture Method

The specific Arboriculture Method Statement shall be prepared for any works within the root protection

Trees will be protected in accordance with BS: 5837:2012 Trees in relation to design, demolition and

The construction works for the new ped/cycle bridge shall be fenced off with solid hoarding and protected from the public. The contractor will liaise and co-ordinate these works with the Cork City

SECTION 9: ARCHAEOLOGY & HERITAGE

9.1 Pre-construction

Given the historic and sensitive nature of the site, prior to any construction commencing an archaeological and heritage assessment and surveys will be carried to include advance archaeological testing across the footprint of the development where machine or hand excavated test trenches allow for the early indication of relevant material. This allows for informed decisions to be made as to how best to progress with construction works and deal with any discovered archaeological finds should they arise.

Based on the results of the above assessments/surveys, detailed monitoring of all groundworks associated with the development may be recommended, with the provision for full excavation of any archaeologically significant material uncovered.

During Construction 9.2

Following the archaeological and heritage assessment, during the construction process, if deemed necessary, archaeological monitoring will be carried out where the construction works are suspected to be in the proximity to an archaeological site. This may involve a forensic archaeologist or human osteoarchaeologist maintaining a watching brief while groundworks are taking place in order to identify and record any archaeological remains that may be present. In the event of archaeological features or material being uncovered during construction monitoring, it is important that all machine work in the immediate area ceases to allow the archaeologist to assess, excavate and record any findings.

Should archaeological features or material be uncovered, adequate funds to cover excavation, fencing, post-excavation analysis and reporting will be made available. This work should be done under license in accordance with Section 26 of the National Monuments Act 1930-2014 and with a method statement agreed in advance with the National Monuments Service (Dept. of Culture, Heritage and the Gaeltacht) and the National Museum of Ireland.

9.3 Mitigation Measures

A programme of archaeological supervision/monitoring of all ground works will be undertaken by a suitablyqualified archaeologist. Given the developed nature of the portions of the site (especially within 'The Farm') and previous programmes of archaeological investigations (within the 'The Meadows'), the archaeological risk is considered to be low. In the unlikely event of an archaeological discovery, the National Monuments Service and Cork City Council will be consulted to agree how the encountered archaeological remains are recorded and resolved.

Site development works (especially ground reduction work and drainage excavation works) will be monitored by a forensic specialist and osteoarchaeologist to allow for the identification of any previously-unrecorded burials or human remains. In the event of such a discovery, An Garda Síochána will be immediately notified and the localised works in the affected area will be suspended subject to the direction of An Garda Síochána.

In relation to works to historic boundary walls, it is recommended that interventions to historic masonry boundary walls have intentionally been kept to a minimum. Where repair or rebuilding works to historic masonry walls are required (including the creation of a new pedestrian entrance in the boundary wall adjacent to the historic entrance to Bessborough Estate), such works will be undertaken by suitablyexperienced conservation contractors with proven experience in the use of traditional lime mortars and rubble masonry.

SECTION 10: WASTE MANAGEMENT

10.1 Introduction

A detailed Construction Waste Management Plan will be agreed with Cork City Council and put in place in order to control waste management on site, ensure segregation of waste streams and minimise construction waste costs. Waste arising from the site will be considered in relation to the waste management hierarchy of prevention, reduce, reuse, recycle, energy recovery and disposal.

Construction and demolition waste is the largest "municipal" waste stream contributing to the current pressure on landfill facilities in the region. Unsustainable management and inappropriate disposal of this waste stream can result in impact on natural resources and lead to environmental pollution. The main source of waste material at the site will be construction waste.

Waste is defined as any substances or object belonging to a category of waste specified in the First Schedule (of the Waste Management Act 1996) or included in the European Waste Catalogue, which the holder discards or intends or is required to discard and anything which is discarded or otherwise dealt with as if it were waste shall be presumed to be waste until the contrary is proved.

There are two main types of construction waste - Hazardous and Non-hazardous as detailed below:

Non-hazardous

- Timber Waste
- Scrap Metal
- Plastic
- Paper / Cardboard •
- Canteen Waste
- Litter

Hazardous

Hazardous Wastes are defined as wastes which can have a harmful effect on the environment and on human health as they exhibit ignitability, reactivity, corrosivity and/or toxicity and/or are listed as hazardous by the European Waste Catalogue and/or may be identified as hazardous by application of the EPA Waste Characterisation Tool compiled by The Clean Technology Centre.

The hazardous wastes that may be experienced at a development of this nature are as follows:

- Adhesives and Sealants
- Aerosols
- **Batteries**
- Chemicals
- **Cleaning Products**
- Oil (Contaminated absorbent Material or debris)
- Paints and Thinner
- Fuels (hydrocarbons such as diesel)
- Concrete waste

The Meadows (Phase 1) development will result in the generation of waste material from the following sources:

- Removal of existing boundaries .
- Excavation of soil for site access, to foundations, ductwork and sewers/watermains
- Excavation of stone / made ground at infrastructure tie-ins to existing water mains, sewers, gas etc.
- new development.

Surplus material (off-cuts, damaged materials, packaging etc.) generated during the construction of the

Approx. 1000m3 of topsoil and 1200m3 of subsoil will be required for backfilling the SUDS attenuation and trench excavation. As such, it is estimated that approx. 10,330m3 will need to be transported off-site for reuse/recycling (See Table 9.1).

A standard 4-axle rigid construction tipper capacity weight is 20 tonnes which is equivalent to approx. 15 cubic metres of soil. Therefore, approx. 690 loads will be required to export the excess soil off-site.

Table 10-1: Cut and Fill Calculation

ltem	Excavate	Reuse	Export
Topsoil Strip	4860m3		
Topsoil Reuse		1000m3	
Topsoil for Export			3860m3
Subsoil from Excavation	7670m3		
Fill Required		1200m3	
Subsoil Excess for Export			6470m3
Total Surplus for Export off- site			10,330m3

Soil will be excavated to facilitate construction of foundations, access roads, the installation of site services and general landscaping. Where possible, excavated topsoil will be reused on site for landscaping. It is anticipated that any additional soil will be removed from the site for reuse, recovery and/or disposal as there are limited suitable onsite re-use options.

The Waste Management Hierarchy states that the most preferred option for waste management is prevention and minimisation of waste, followed by reuse and recycling/recovery, energy recovery (i.e. incineration) and, least favoured of all, disposal. The excavations are required to facilitate construction so the preferred option (prevention and minimisation) cannot be accommodated for the bulk excavation phase.

The next option (beneficial reuse) may be possible for some and potentially all of the inert natural material (Category A1). This material could be used as fill material in other construction projects or engineering fill for waste licensed sites. Beneficial reuse of surplus excavation material as engineering fill may be subject to further testing to determine if materials meet the specific engineering standards for their proposed enduse.

Any nearby sites requiring clean fill/capping material will be contacted to investigate reuse opportunities for clean and inert material. If any of the material is to be reused on another site European Communities (Waste Directive) Regulations 2011, Article 27 requires that certain conditions are met and that by-product decisions are made to the EPA, via their online notification form.

If the material is deemed to be a waste, removal and reuse/recycling/ recovery/disposal of the material will be carried out in accordance with the Waste Management Acts 1996-2008, the Waste Management (Collection Permit) Regulations 2007 (as amended) the Waste Management (Facility Permit & Registration) Regulations 2007 (as amended). The volume of waste removed will dictate whether a Certificate of Registration (COR), Waste Facility Permit or Waste Licence is required by the receiving facility.

Once all available beneficial reuse options have been exhausted, the options of recycling and recovery at waste permitted and licensed sites will be considered. The option of disposal of inert natural material to landfill will only be considered once all available reuse options have been explored and where capacity cannot be secured at appropriately permitted/licensed facilities for recycling or recovery purposes.

Any soil/subsoil that is deemed to be contaminated will be stored separately to the clean and inert soil/subsoil. The material will be appropriately tested and classified as either non-hazardous or hazardous in accordance with the EPA publication 'Waste Classification: List of Waste & Determining if Waste is Hazardous or Non-Hazardous' using the HazWasteOnline application (or similar approved classification method). The material will then need to be classified as clean, inert, non-hazardous or hazardous in accordance with the EC Council Decision 2003/33/EC.

The highest volume of materials generated will be topsoil and subsoil/stones from site clearance to accommodate access routes, bridge construction, footpaths, services, and foundation excavation to enable construction of the apartment blocks. Some of the material will be re-used on site for the car park podium and landscaping, however, some will be removed off-site. Given the proposed developable area is 1.53 hectares, the following estimations of excavated material have been calculated:

- An average depth of 100-200mm for topsoil strip will generate approx. 4860m3.
- Subsoil excavation for access route and footpath construction, piling and excavation for foundations will generate approx.4470m3.
- Excavation for watermains, foul and surface water sewer will generate approx. 2400m3 of material.
- Subsoil excavation to provide SUDS attenuation area amounts to approx. 800m3.
- The total subsoil excavation is therefore approximately 7670m3.

SECTION 11: EMERGENCY PLANNING AND RESPONSE

A set of standardised emergency response procedures will govern the management of emergency incidents. The contractor will be required to outline emergency incident response procedures in the detailed CEMP and to develop an Emergency Incident Response Plan. These procedures will be as follows:

- Emergency preparedness and response procedure (incl. emergency phone numbers)
- Incident investigation procedure
- Nonconformity, corrective action and preventative action
- Spillage containment procedure
- Pollution prevention programme and corrective action reporting

In the event of spillages or other incidents, steps will be taken to prevent environmental pollution, for example through protection of drains by use of drain covers or booms, use of absorbent granules following a fuel or oil / chemical spill and turning off equipment or other sources of noise or dust.

Once the situation has been rectified, full details the incident and remedial actions undertaken will be provided to the City Council and relevant authorities and recorded appropriately.

Appropriate measures to prevent a recurrence of such incidents will be developed in consultation with these authorities.

SECTION 12: INSPECTIONS AND MONITORING

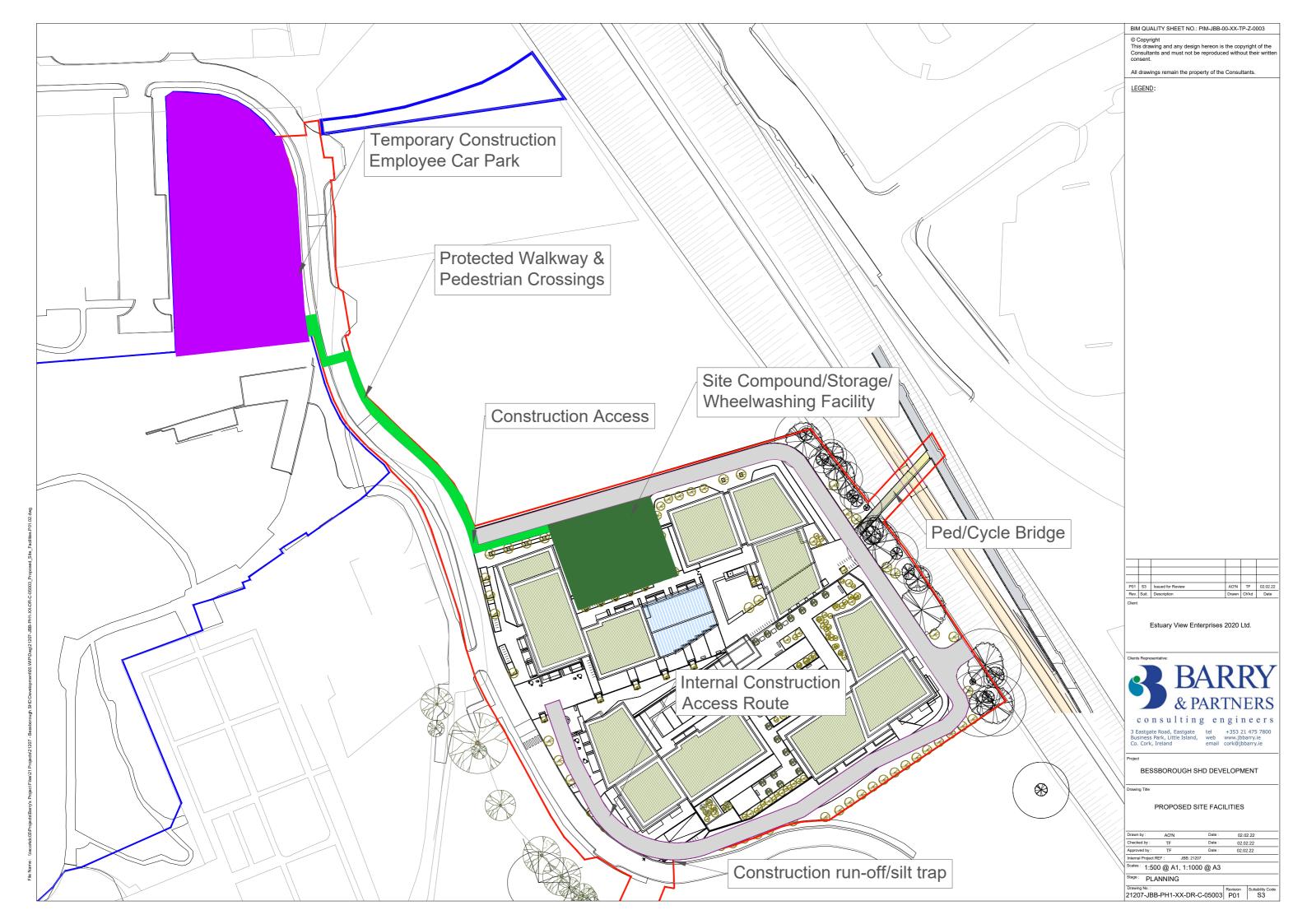
The environmental performance of the contractor will be monitored through site inspections. Monitoring will be carried out in accordance with the requirements of the EIAR so that construction activities are undertaken in a manner that does not give rise to significant negative effects. Suitable monitoring programmes will need to be developed, implemented, documented, and assessed in accordance with the measures outlined in the detailed CEMP and EIAR.

The results of all environmental monitoring activities will be reviewed by the Site Environmental Manager on an ongoing basis to enable trends to be identified and corrective actions to be implemented as necessary.

Routine inspections of construction activities will be carried out by the Site Environmental Manager on a daily basis to ensure all necessary environmental measures relevant to the construction activities are being effectively implemented by construction staff. Detailed inspections should be carried out weekly which would be appropriately documented by the Environmental Manager. The inspection routine should include:

- Summary of compliance/non-compliance with the detailed CEMP
- Results and interpretation of monitoring programmes
- Key issues noted during inspections •
- Summary record of non-conformities, incidents and corrective actions
- Summary of environmental complaints and queries received in relation to environmental matters; and
- Summary record of environmental training undertaken by staff.

03.2022



	4		
			\sim
	$ \setminus \setminus $ '		
Car Park	/ / / /		
	\rightarrow		
			\sim
		\backslash	
	\land		\frown
A A A A A A A A A A A A A A A A A A A			
		、 、	
		\backslash	
		````	$\setminus \parallel$
	THE MEADOWS BUILI	JINGS: A,	B,C,D
$\sim$	280 APARTMENTS	NO.	%
	STUDIO AP. 1 BEDROOM AP.	6 112	2.1 % 40.0 %
	2 BEDROOM AP. 4P	150	53.6%
	3 BEDROOM AP. TOTAL NO.	12 280	4.3 % 100 %
	DUAL ASPECT	121	43.2%
	NO. OF UNITS WITH	162	57.8%
	AREA 10% GREATER THAN REQUIRED		
	TOTAL RESIDENT'S PRIVATE AMENITY AREA	2,172 sqm	
	PUBLIC OPEN SPACE	3,958 sqm	63,5 %
	PARKING SPACES	98	35.0%
	CRECHE DROP OFF MOTORBIKE SPACES	4 10	
	RESIDENT'S BIKE SPACES	464	
	VISITOR'S BIKE SPACES	140	
	LEGEND		
	POND		
	VEGETATION	4S	
	PATHS		
	GREEN ROO	F	
	EXISTING TR ROOT PROT		
	ZONE		
	PROPOSED 1		
		LEIVIO VEU	
	site boundary a	REA: 2.3 ha	a
	Site Centre Point Coordina	ites:	
	X,Y = 571940.0,570405.0		
	OTHER	lands under Ant's Ownershif	,
	CII: DODA	].  }	<b>BN</b> 7
TE PLAN	SHIPSEY	place	makers
THE MEADOWS- BESSBOROUGH         DRAWING DESCRIPTION:         SITE PLAN           1500 @ A1         DATE :         03.2021         OVERSEEN BY :MD	CLIENT : APPROVED BY : GB DRAWING NO.	ESTUARY VIEW ENT. SB-2020-107-200	LTD
nd mil (Malhida, Con), Malend - 11 + 333 (52) 2008 55 - 1 + 353 (52) 2008 27 - e inio@ohgosytamy.com - weestigany.amy.com 🔘 COMM2-0	of \$HPSEY BABBY Ltd. This drawing or design may not be reproduced without	express written permission of SHi	PSEYBARRY Ltd

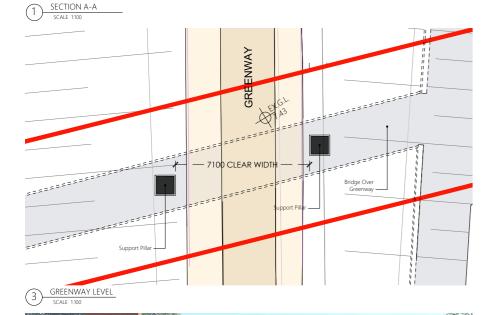


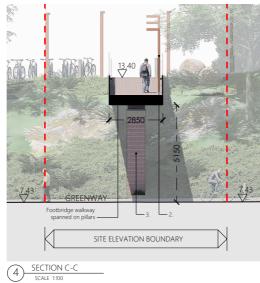









(5)


3. BRICK BRIDGE PILLARS

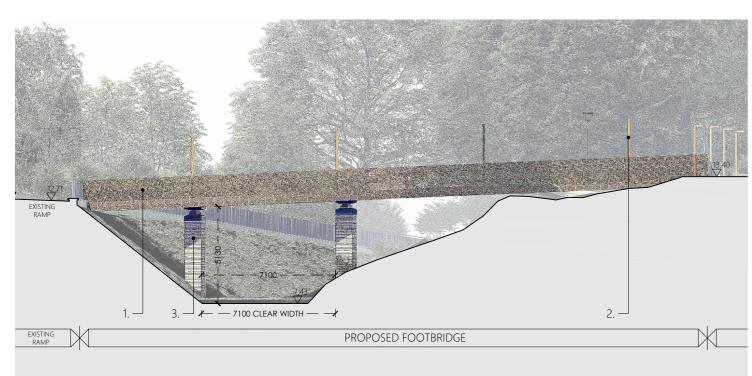




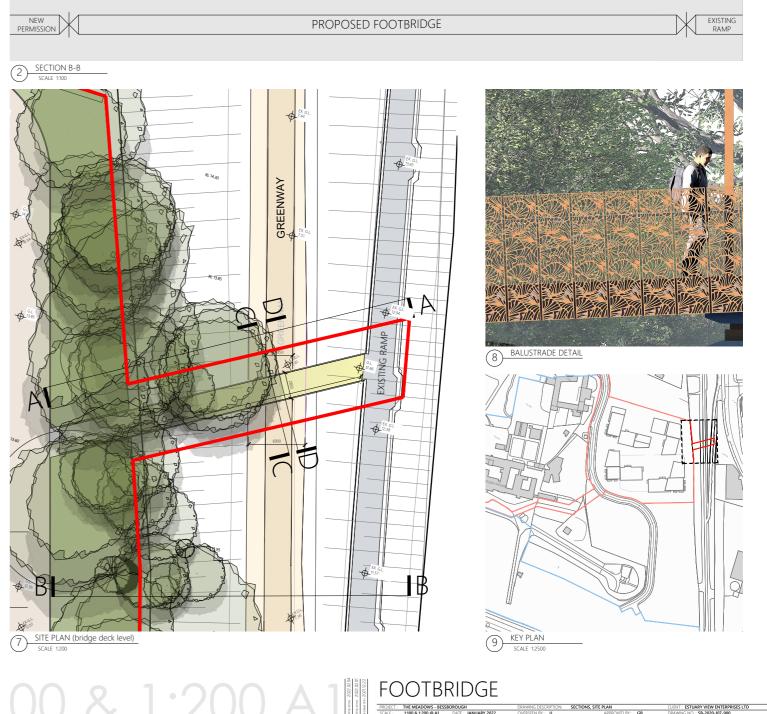


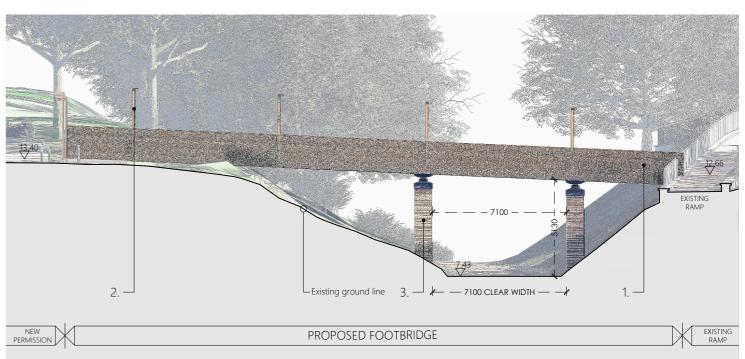





 $L_2 L$ 

SITE ELEVATION BOUNDARY


Footbridge walkwa spanned on pillars


XISTING RAN

6 SECTION D-D SCALE 1:100











### Residential development at Bessborough, Ballinure, Blackrock, Cork EIAR

- Ensure an adequate water supply on the site for effective dust / particulate matter suppression.
- Use enclosed chutes and conveyors and covered skips. •
- Avoid dry sweeping of large areas. •
- Minimise drop heights from conveyors and other loading or handling equipment and use fine • water sprays on such equipment wherever appropriate.
- soon as reasonably practicable after the event.

### Waste management

Avoid bonfires and burning of waste materials.

### **Demolition activities**

- where possible, to provide a screen against dust).
- Ensure effective water suppression is used during demolition operations. •
- Avoid explosive blasting, using appropriate manual or mechanical alternatives. •
- Bag and remove any biological debris or damp down such material before demolition. •

### Earthwork's activities

- Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as • practicable.
- Only remove the cover in small areas during work and not all at once. •
- suppress dust.

### **Construction activities**

- Ensure aggregates are stored in bunded areas and are not allowed to dry out unless this is required for a particular process.
- in with suitable emission control systems to prevent escape of material and overfilling during delivery.
- For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately.
- During periods of very high winds (gales), construction activities likely to generate significant dust emissions should be postponed until the gale has subsided.

### Appendix A **Dust Management Plan**

### Site management

The aim is to ensure good site management by avoiding dust becoming airborne at source. This will be done through good design and effective control strategies. At the construction planning stage, the siting of activities and storage piles will take note of the location of sensitive receptors and prevailing wind directions. As the prevailing wind is predominantly south-westerly, locating construction compounds and storage piles downwind of sensitive receptors will minimise the potential for dust nuisance to occur at sensitive receptors. The Principal Contractor or equivalent must ensure that the proposed mitigation measures are implemented, and that dust impacts and nuisance are minimised.

- It is recommended that community engagement be undertaken before works commence on site • explaining the nature and duration of the works to local residents and businesses.
- The name and contact details of a person to contact regarding air guality and dust issues shall be displayed on the site boundary. A complaints register will be kept on site detailing all sources of complaints received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out.
- Regular inspections of the site and boundary should be carried out to monitor dust, records and notes on these inspections should be logged.
- Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and . the action taken to resolve the situation in the logbook.
- In the event of dust nuisance occurring outside the site boundary, site activities will be reviewed, ٠ and satisfactory procedures implemented to rectify the problem.

### Preparing and maintaining the site

- Plan site layout so that machinery and dust causing activities are located away from receptors, as • far as is possible.
- Erect solid screens or barriers around dusty activities or the site boundary that are at least as high • as any stockpiles on site if necessary.
- Fully enclose site or specific operations where there is a high potential for dust production and the site is actives for an extensive period
- Avoid site runoff of water or mud. •
- Keep site fencing, barriers and scaffolding clean using wet methods.
- Remove materials that have a potential to produce dust from site as soon as possible, unless • being re-used on site. If they are being re-used on-site cover or fence stockpiles to prevent wind whipping.

### Site roads and operating vehicles / machinery

- A speed restriction of 20 km/hr will be applied as an effective control measure for dust for on-site vehicles using unpaved site roads.
- Access gates to the site shall be located at least 10m from sensitive receptors where possible. •
- Bowsers or suitable watering equipment will be available during periods of dry weather. Watering shall be conducted during sustained dry periods to ensure that unpaved areas are kept moist.
- Any hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads shall be restricted to essential site traffic only.
- Ensure all vehicles switch off engines when stationary. ٠
- Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.

### Site traffic on public roads

- Vehicles delivering material with potential for dust emissions to an off-site location shall be enclosed or covered with tarpaulin at all times.
- At the main construction traffic exit, a wheel wash facility shall be installed. All trucks leaving the ٠ site must pass through the wheel wash. The wheel wash will be located sufficiently far from the exit to allow trucks to 'drip off' prior to exit. In addition, public roads outside the site shall be regularly inspected for cleanliness and cleaned as necessary.
- Vehicles onsite shall turn off engines when not in use to prevent idling emissions. •

### Onsite operations

Only use cutting, grinding, or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays.

Ensure equipment is readily available on site to clean any dry spillages and clean up spillages as

Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building

During dry and windy periods, and when there is a likelihood of dust nuisance, a bowser or similar will operate to ensure moisture content is high enough to increase the stability of the soil and thus

Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored

• Appendix 2-2 – Construction & Environmental Management Plan – – Phase 2 'The Farms'- prepared by JB Barry and Partners Limited, Consultant Engineers

Client:

Estuary View Enterprises 2020 Ltd.

Project:

## Bessborough SHD Development

Report:

## Construction & Environmental Management Plan (CEMP)





## **Document Control Sheet**

Client:	Estuary View Enterprises 2020 Ltd.	
Project Title:	Bessborough SHD Development	
Document Title:	Construction & Environmental Management Plan	
File Name:         21207-JBB-PH2-XX-RP-C-05002		

Table of Contents	List of Tables	List of Figures	Pages of Text	Appendices
(incl. Y/N)	(incl. Y/N)	(incl. Y/N)	(No.)	(No.)
Y	Ν	Ν	25	

Document Revision			Document Verification				
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
10/02/2022	P01	S3	AO'N	TF	TF	MO'D	N/A
21/02/2022	P02	S3	AO'N	TF	TF	MO'D	N/A
07/03/2022	P03	S3	AO'N	TF	TF	MO'D	N/A
14/03/2022	P04	S3	AO'N	TF	TF	MO'D	N/A
21/03/2022	P05	S3	A'ON	TF	TF	MO'D	N/A

## **Table of Contents**

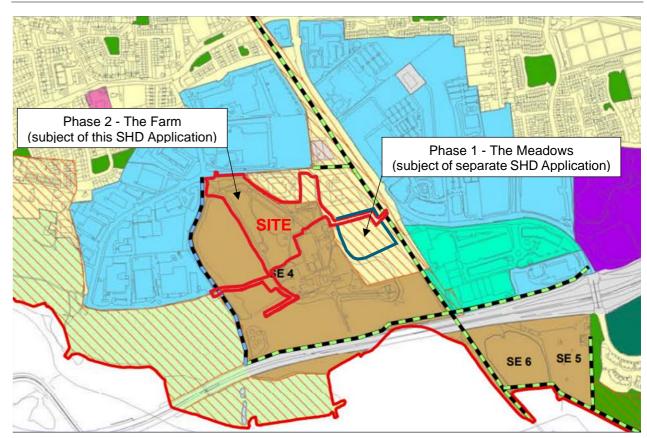
SECTION 1:	INTRODUCTION	1
1.1	Introduction	1
1.2	Proposed Development	2
SECTION 2:	ROLES AND RESPONSIBILITIES	5
2.1	Client and Contractor	5
2.2	Site Manager	5
2.3	Site Environmental Manager (SEM)	5
2.4	Environmental Specialists	
2.5	Training and Induction	
SECTION 3:	CONSTRUCTION WORKS MANAGEMENT	
3.1	Proposed Construction Sequencing	
3.2	Working Hours	
3.3	Cranes and Lifting of Equipment	
3.4	Site Storage	
3.5	Site Safety and Access/Egress	
SECTION 4:	TRAFFIC & TRANSPORTATION MEASURES	
4.1	Introduction	
4.2	Access Control	
4.3	Construction Related Traffic Movements	
4.4	Mitigation Measures	
SECTION 5:	AIR QUALITY	
5.1	Introduction	
5.2	Dust Sources	
5.3	Mitigation Measures	
SECTION 6:	NOISE AND VIBRATION CONTROL MEASURES	
6.1	Introduction	
6.2 6.3	Noise and Vibration Regulations	
	Mitigation Measures	
SECTION 7:	WATER AND WASTEWATER CONTROLS	
7.1	Introduction	
7.2	Mitigation Measures	
SECTION 8:	LANDSCAPE MANAGEMENT	
SECTION 9:	ARCHAEOLOGY & HERITAGE	-
9.1	Pre-Construction	
9.2	During Construction	
9.3	Mitigation Measures	
SECTION 10:	WASTE MANAGEMENT	
10.1	Introduction	
SECTION 11:	EMERGENCY PLANNING AND RESPONSE	. 24
SECTION 12:	INSPECTIONS AND MONITORING	. 25

## **APPENDICES:**

Appendix 1: Proposed Masterplan Layout Appendix 2: Proposed Site Plan Appendix 3: Proposed Ped/Cycle Bridge Appendix 4: Dust Mitigation Plan

#### SECTION 1: Introduction

## 1.1 Introduction


This Construction and Environmental Management Plan (CEMP) has been prepared as part of the planning application for the Phase 2 - The Farm Bessborough Strategic Housing Development (SHD). The site is located in Bessborough, Ballinure, Blackrock, Cork.

The CEMP considers the proposed works associated with the construction of 140 apartments, a creche and shared communal facilities including a resident's gym, workspace, lounge, function room, library, lobby and concierge facilities. The proposed development includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas. The development also consists of the demolition of 10 no. existing agricultural buildings /sheds and log cabin structure. This CEMP will assist with avoiding, reducing, or mitigating construction and environmental impacts arising from the proposed development.

This document has been prepared based on known assessment issues related to construction works management, traffic and transportation measures, air quality, noise and vibration, water and wastewater, landscape management, archaeology, waste management, emergency planning response and inspection and monitoring, all of which are associated with the construction works. This information will be built on prior to commencement of construction in an updated CEMP.

More detailed site-specific measures will be developed and agreed with Cork City Council prior to the commencement, subject to a successful planning application. The final CEMP will consider any conditions attached to a grant of planning permission.

The Phase 2 – The Farm application represents one of two phases of the development proposed by Estuary View Enterprises 2020 Ltd, for which planning permission is being sought from An Bord Pleanála under the Strategic Housing Development legislation. Zoning differences across the site have necessitated a dual approach being adopted to applying for planning permission, see Fig.1.1 below, including highlighted location of Phases 1 and 2. The area for Phase 2 is zoned under SE4 – Landscape Preservation Zone and ZO4 – Residential, Local Services and Institutional Uses. This CEMP details requirements for Phase 2 'The Farm' and a separate document, 1207-JBB-PH1-XX-RP-C-05001 Construction & Environmental Plan has been prepared for the proposed Phase 1 development, 'The Meadows'.



## Figure 1-1: Zoning Differences across the proposed site (Cork City Development Plan 2015-2021)

#### **Proposed Development** 1.2

## 1.2.1 Existing Site

The application site is in Bessborough, Ballinure, Blackrock, considered within the south-eastern suburbs of Cork City as defined in the Cork City Development Plan 2015-2021. Access to/from the site is via an existing access road, Bessborough Road. Bessborough Road joins the wider road network at the junction with Skehard Road. Access to the site is by means of the existing access road serving Bessborough Day Care Centre and Bessborough Castle Folly. The existing development lands currently accommodate existing disused farm and outbuildings and treed amenity area and the site is therefore considered predominantly brownfield. Nearby buildings include Bessborough Day Care Centre to the north, Cork Community Mediation Service and the Bessborough Centre immediately to the south.

The surrounding lands are predominantly a mix of residential, parklands and commercial/industrial buildings at Mahon Industrial Estate. There have been several residential developments north of the proposed site, close to the Mahon Industrial Estate, in recent years, one of which is currently at construction stage.





Bessborough SHD Development Construction & Environmental Management Plan



Figure 1-2: Site location and access route

## 1.2.2 Proposed Development Site Overview

The overall proposed development is ultimately intended to comprise 420 residential units with a creches, café, residence gyms, landscaping, pedestrian/cycleway infrastructure and associated site development works located on lands bounded by the N40, Bessborough Road, the Passage West Greenway and the Ballinure amenity walk.

Permission for the first two phases of the proposed development is being sought under two separate SHD planning applications. These two applications are named as Phase 1-The Meadows and Phase 2 -The Farm. Further development of the site is to include Phase 3 - North Fields, subject to appropriate zoning for this portion of the overall lands, and this Phase 3 area is shown in the masterplan layout. See Appendix 1 for the proposed masterplan layout.

## 1.2.3 Proposed Development : Phase 2 - The Farm

This CEMP is prepared for the Phase 2 element of the development. A proposed site layout plan is shown in Figure 1.3 below and included in Appendix 2.

The proposed development provides for the demolition of 10 no. existing agricultural buildings /sheds and log cabin residential structure and the construction of a residential development of 140 no. residential apartment units over 2 no. retained and repurposed farmyard buildings (A & B) with single storey extension and 3 no. new blocks of 3-5 storeys in height, with supporting resident amenity facilities, crèche, and all ancillary site development works. The proposed development includes 140 no. apartments to be provided as follows: Block C (9 no. 1-bedroom and 25 no. 2-bedroom over 3 storeys), Block D (34 no. 1bedroom & 24 no. 2-bedroom over 3-4 storeys), Block E (27 no. 1-bedroom, 20 no. 2-bedroom & 1 no. 3bedroom over 4-5 storeys). It is proposed to use retained Block A and Block B for resident amenities which include home workspace, library, lounge and function space.

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas, as well as new pedestrian access to Bessborough Estate to the north including upgrades to an existing pedestrian crossing on Bessboro Road.

The proposed development provides for outdoor amenity areas including publicly accessible parkland, landscaping, surface car parking, bicycle parking, bin stores, substation, public lighting, roof mounted

Estuary View Enterprises 2020 Ltd

solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road.



Figure 1-3: Phase 2 – The Farm Proposed Site Layout







## SECTION 2: Roles and Responsibilities

## 2.1 Client and Contractor

The Applicant will be responsible for ensuring that an appropriate Environmental Management Framework is adhered to, that competent parties are appointed to undertake construction and that sufficient resources are made available to facilitate the appropriate management of risks to the environment.

As part of the Environmental Management Framework, the Building Contractor will need to comply with all relevant environmental legislation, take account of published standards (ISO14001) and relevant documentation including the Environmental Impact Assessment Report (EIAR), any planning conditions from An Bord Pleanala (ABP), this CEMP and the subsequent detailed CEMP. Regarding the subsequent detailed CEMP, the Applicant is responsible for ensuring that this is developed in consultation with the design team and the local authority.

The Building Contractor is also responsible for ensuring that all members of the Project Construction Team, including sub-contractors, comply with the procedures set out in the CEMP, including following any specific requirements set-out in the EIAR. The Contractor appointed will be responsible for the organisation, direction and execution of environmental-related activities during the construction of the proposed development. In addition, they will ensure that all persons allocated specific environmental responsibilities are notified of their appointment and confirm that their responsibilities are clearly understood.

## 2.2 Site Manager

A Site Manager will be appointed by the Contractor to oversee the day-to-day management of the site and ensure that effective, safe and planned construction activities are delivered on an ongoing basis to the highest standards. The Site Manager will be competent, suitably qualified and an experienced professional that will oversee site logistics, communicate regularly with construction staff, accommodate project-specific inductions for staff on-site and ensure that all work is complaint with the relevant design standards and health and safety legislation.

## 2.3 Site Environmental Manager (SEM)

A Site Environmental Manager will be appointed by the Contractor to ensure that the CEMP is effectively implemented. The Environmental Manager will be suitably qualified and competent. The responsibilities of the SEM include, but are not limited to:

- Preparing, maintaining and implementing the CEMP
- Completing site inspection and environmental compliance reports
- Providing guidance for the site team in dealing with environmental matters, including legal and statutory requirements affecting the works
- Reviewing environmental management content of method statements where relevant
- Reporting environmental performance to the Site Manager
- Liaising with statutory and non-statutory bodies and third parties with an environmental interest in the proposed development.
- Conducting regular environmental inspections as specified in the contract and checking adherence to the CEMP
- Keeping up-to-date with relevant environmental best practice and legislative changes
- Ensuring all personnel have undertaken adequate environmental inductions, awareness briefings sand training (including sub-contractors)
- Dealing with environmental complaints
- Managing and responding to environmental incidents and ensuring that all incidents are recorded and reported in an appropriate manner.

## 2.4 Environmental Specialists

Where relevant, and to fulfil obligations under the CEMP, the Contractor will be responsible for engaging suitably qualified specialists including (where necessary):

- Project archaeologist;
- Project ecologist;
- Project arborist;
- Noise and vibration specialist;
- Air Quality and dust specialist;
- Land, soils and contamination specialist; and
- Water specialist.

## 2.5 Training and Induction

### 2.5.1 Site Induction

All personnel involved in the proposed Phase 2 – The Farm development will receive environmental awareness training. The environmental training and awareness procedure will ensure that staff are familiar with the principles of the CEMP, the environmental aspects and impacts. associated with their activities, the procedures in place to control these impacts and the consequences of departure from these procedures.

### 2.5.2 Specific Training and Awareness Raising

A project specific training plan that identifies the competency requirements for all personnel allocated with environmental responsibilities will be produced by the Contractor. Training will be provided by the Contractor to ensure that all persons working on site have a practical understanding of environmental issues and management requirements prior to commencing activities. A register of completed training is to be kept by the SEM. The Site Manager will ensure that environmental emergency plans are drawn up and the SEM will conduct the necessary training/inductions.





#### SECTION 3: Construction Works Management

## 3.1 Proposed Construction Sequencing

The development of Phase 2 -The Farm will include the construction and completion of 140 no. residential units and creche comprising 5 apartment blocks and all ancillary works. Prior to any construction works being carried out, the proposed development will initially involve some site clearance, the demolition of existing farm buildings and sheds and earthworks in order to clear and grade the site to accommodate the construction of all associated engineering works and subsequently the building foundations.

This will involve the delivery of machinery, site equipment/plant and materials and the removal of some material off-site. Any material that can be reused later in the construction process will be stockpiled in an appropriate location; this will reduce the number of vehicular movements on the public roads. Once the site access, parking and compound facilities are established, the main haulage of materials to the site will include stone, concrete, blocks, steel and other building materials. Appropriate traffic management measures will be provided to minimise the impact of construction traffic on the local road network as detailed in Section 4 of this report.

An indicative construction sequence is outlined below to illustrate the buildability of the project. The actual construction sequence will be confirmed when any conditions of planning are received, and construction appointments confirmed.

To develop the complete site for Phase 2, the following works will be required to be carried out:

- Provision of a temporary construction access from the existing Bessborough Road into the site (at the location of the proposed permanent entrance), safe and secure site compound including welfare facilities for workers and the erection of temporary boundary fencing.
- Measures to reduce the potential risk of impacts to retained trees.
- Creation of a storage area for surplus plant and materials.
- . Creation of a site batch concrete area.
- Creation of silt traps at the low point to the south of the construction site to prevent construction runoff towards natural vegetation and Cork Harbour estuary watercourse.
- Demolition of existing farm buildings and sheds.
- . Trenching for underground services including foul sewer, surface water drainage including attenuation, water mains, gas, telecommunications, electricity and lighting.
- Construction of a new pedestrian/cycle bridge over the existing Passage Greenway and linking to the existing down ramp to the greenway.
- Construction and connection of underground services to existing underground services.
- Foul sewer connection will be made across the Ballinure walkway to the west of the site to connect to the existing wastewater pumping station close to the western boundary of the site. The final section of the foul sewer connection to the existing Ballinure wastewater pumping station will be made using directional-drilling methods (and not open-cut trenching) to maintain the integrity of the existing boundary wall to the estate and to allow the walkway to remain in use while these works proceed. A pipe jacking chamber will be constructed on the eastern side of the existing boundary wall to facilitate this installation work.
- Surface water connection will be made to an existing surface water sewer in the south-western area of the site.
- Watermain connections will be made to the existing watermain in Bessborough Road.
- No dwelling unit will be occupied prior to the completion of an approved foul sewer outfall and no hardstanding area will be completed without an approved storm outfall.
- Excavation and concrete works for strip and pad footing foundations.
- Piling to some blocks, likely to be bored piles with in-situ concrete and rebar infilling.
- Construction of the apartment buildings, plant and storage areas, likely to be constructed in reinforcedconcrete frames.



- Construction of ancillary site works including the provision of 1 substation, outdoor amenity areas, lighting and all supporting site development works.
- Erection of permanent boundary fencing, landscaping and lighting.

It is estimated that Phase 2 construction will take 24 months to complete.

## 3.2 Working Hours

It is envisaged that normal working hours will be between 7:00am and 6:00pm, Monday to Friday and 8:00am to 2:00pm on Saturdays, subject to any conditions set down by An Bord Pleanála/Cork City Council. No working will be allowed on Sundays or Bank Holidays. Subject to the agreement of the local authority, out-of-hours working may be required for water main connections, foul drainage connections, tower crane erection and removal etc. Any such arrangements will be agreed at construction stage.

## 3.3 Cranes and Lifting of Equipment

The proposed build method for the apartment blocks is likely to be as a reinforced concrete (RC) frame. Tower cranes and concrete placing booms will be required to erect the RC frame. A combination of goods hoists and telehandlers will offload and distribute materials for the construction and finishing trades.

Craneage will be required for the installation of the main structure of the pedestrian/cyclist bridge.

All lifting equipment and appliances will carry current test certificates and be inspected prior to use. Trained and competent bankmen will attend the cranes.

Road Closures may be required for a short period to enable the tower crane to be transported to/from site. The appropriate approvals and permits for any road closures will be applied for and agreed with Cork City Council. All relevant stakeholders will be kept informed of any such closures.

#### Site Storage 3.4

Due to the site restrictions, the storage of materials on site will be kept to the minimum. A construction programme will be developed to ensure that no large materials will be required to be stored on-site until they are needed. Materials such as glazing and cladding systems will be delivered in batches and loaded evenly on the required floors. Throughout the project, storage of materials outside the site boundary will not be permitted.

## 3.5 Site Safety and Access/Egress

Appropriate management of the transport operations will be applied throughout the construction process. Construction site compounds and staff parking areas will be set up before any construction works start onsite. The site compounds will be located within the site's boundary at appropriate locations as shown in Figure 3.1. Hoarding and boundary fencing will be erected to delineate all site works and separate same from the surrounding public areas located adjacent to the development.

It is not yet confirmed as to where staff parking will be provided. As some of the proposed car park for site staff may located off-site and away from the site compound, there will be appropriate pedestrian facilities between the two which will segregate pedestrians from moving traffic and give priority to pedestrians at any crossing points. A detailed Construction Traffic Management Plan will be prepared by the Contractor and submitted to the Planning Authority prior to the commencement of any construction.

It is proposed to construct the bridge structure which will link the site to the Passage West Greenway as part of the Phase 2 works. This would enable a connection for construction workers to use active travel or



landscaping, 58 car parking spaces, 5 motorbike spaces, 330 bicycle parking spaces, bin stores, public

public transport during future phases of development, reducing the requirement for dedicated parking spaces for some workers. See Appendix 3 for details of the proposed bridge.

The construction of the bridge structure over the greenway will require work on both sides of the proposed structure to install abutments/landing areas for what is likely to be a steel structure which is fabricated offsite and delivered and erected on site by crane in a single operation. The construction of a suitable abutment structure/landing area on the eastern side of the greenway will require temporary closure of the access ramp into which the bridge connects and the timing and sequencing of this work will be agreed with Cork City Council. The impacts on the use of the greenway will be limited in extent and significance for this stage of the works.



Figure 3-1: Possible Multiple Site Compound Locations

During the construction of the bridge, a closure of the greenway will be required to construct the bridge supports and lift the bridge into place. When the pre-fabricated bridge structure is being lifted into place there will be a requirement to close the greenway and ramp access to allow this work to proceed safely. This closure is likely to be for a limited period only and again the details of such a closure will be agreed with Cork City Council in advance of construction work commencing on the development. Appropriate diversions will be in place from both the Blackrock and Rochestown side, using the facilities around the Mahon Retail Park. Travelling from Blackrock, users will exit the greenway at the Mater Hospital ramp and use the facilities on the R852 and re-join the greenway prior to the N40 overbridge. From the Rochestown direction, the reverse of the above route will enable users to continue their journey during the bridge construction.

Security of the site is an important issue with respect to restricting site entry to personnel solely involved in the construction process during working hours and preventing unauthorised access out of hours. Site access for all personnel and visitors will be strictly controlled and all visitors will report to the site office prior to entering the construction area.

## SECTION 4: Traffic & Transportation Measures

## 4.1 Introduction

Chapter 5 of the EIAR and the Traffic and Transport Assessment (TTA) and Mobility Management Plan (MMP) prepared by MHL Consulting Engineers has not identified any significant potential impacts in respect of traffic during the construction phase:

- 'In general, the impact of the construction traffic will final development operational stage'.
- 'The surrounding road network is suitable to accomproposed development'.

It is outlined in the TTA that a detailed Construction Traffic Management Plan (CTMP) will be prepared by the successful contractor in consultation with Cork City Council Roads and Transportation Department.

The principal objective of the CTMP is to ensure that the impacts of all building activities generated during the construction phase upon the public (off-site), visitors to the subject site (on-site) and internal (on-site) workers environment are fully considered and proactively managed/programmed, thereby ensuring that safety is maintained at all times, disruption is minimised, and that works are undertaken within a controlled, hazard-minimised environment.

## 4.2 Access Control

The proposed construction site is located off the access road which serves existing buildings including the Bessboro Day Care Centre and the Cork Community Mediation Service. See Figure 4.1. The proposed development is approximately 700m from the junction of Skehard Road and Bessboro Road. This is the main access point from the wider road network and will form the preferred haulage route to/from the site in agreement with Cork City Council. The geometry of the access route is appropriate for construction traffic and HGVs. A number of nearby residential developments were recently completed or are currently under construction and would have used the same access route, up to a point, for this development.

It is anticipated that heavy goods vehicles, HGVs, will be restricted to off-peak times on the local road network to reduce the impact on the road network during the morning and evening peaks. It is expected that HGV movements and general deliveries will otherwise arrive/leave throughout the day at a steady rate.





'In general, the impact of the construction traffic will be temporary in nature and less significant than the

'The surrounding road network is suitable to accommodate the construction traffic associated with the

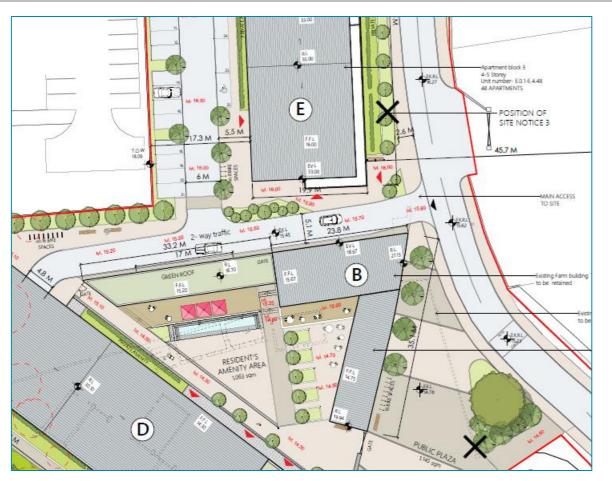



Figure 4-1: Proposed Operational / Construction Site Access

Appropriate signage for the site will be provided on the approach routes to provide clarity for construction vehicles, particularly deliveries who may not be familiar with the site location. This will provide wayfinding for drivers and limit the number of turning manoeuvres outside the site.

The following section includes a range of mitigation measures to minimise the construction traffic generation, ensure the safety of the workforce on the site and accessing the site, and ensuring the safety of the public on the surrounding roads.

#### **Construction Related Traffic Movements** 4.3

The demolition, site clearance, piling and general construction activities will generate a level of vehicle movement to and from the site as well as internally within the subject site.

The typical construction trips generated during site clearance and construction comprise:

- Construction employees arriving and leaving work •
- Deliveries and removal of machinery; and
- Delivery and removal of materials.

Appropriate measures will be put in place to ensure safe access to/from the site. Measures will also be implemented on-site to ensure safe manoeuvres can be carried out within the construction site. A construction site car park will be located within the Applicant's lands, and possibly on nearby, third-party lands if required, with a dedicated pedestrian route to the site accommodation. There will be designated areas on site for loading/unloading and a specified storage area for materials and machinery. A waste and recycling area will be established within the construction site boundary, close to the construction access, to prevent unnecessary trips through the site for collection. To ensure that the internal site routes and the



Page 11

public road to the construction site entrance is kept in good condition, a wheel washing facility will be located close to the exit from the construction area to minimize mud and dust.

The level of construction traffic throughout the working day is expected to be low to moderate, the highest volume of vehicles is expected when workers arrive to and leave work. Generally, workers are expected to travel by private vehicle and public transport. It is expected that there will be a typical average of approximately 80 no. construction employees on site during Phase 2 works.

Deliveries and HGV movement numbers are expected to be low to moderate and evenly spread throughout the day. The HGV traffic is expected to be greater during the initial stage of the development as larger machinery and materials will be delivered. This will, however, reduce as the construction of the buildings advance.

Deliveries of materials to site will be planned to avoid high volume periods where possible, particularly the AM peak hour. There may be occasions, however, when it is necessary to have deliveries within these periods. As previously stated, the Contractor will develop, agree and submit a detailed Construction Traffic Management Plan to the local authority for approval prior to commencement of construction works. The following section details some of the mitigation measures to be included in the detailed CTMP.

#### Mitigation Measures 4.4

A competent traffic co-ordinator and banksmen will be appointed by the contractor to oversee the following control measures which will be implemented as part of the final CTMP to reduce the risks associated with construction traffic. Some of the following measures also tie in with mitigation measures for dust and noise.

- offices/storage areas/waste management areas etc.
- egress of vehicles.
- provided where drivers and pedestrians can see each other clearly.
- appropriate visibility splays.
- All public and private walkways will be maintained free of obstructions
- CSCS cards.
- using the access road.
- Traffic management procedures will be communicated to suppliers and workers.
- which a detailed plan will be agreed with the local authority..
- condition and clear of obstructions.
- may be created during construction activities.
- the escape of dust.
- on the ground within the construction access road and the public road.
- and the Skehard Road junction will be kept clean at all times.



A detailed site plan/layout of the construction site will be developed to identify locations for site

Entrances and exits - separate entry and exit gateways will be provided for pedestrians and vehicles with a gate attendant employed to interface with the traffic and public to facilitate safe access and

Where employees will need to cross the carriageway, a clearly signed and lit crossing point will be

Visibility - the site operator will ensure that drivers driving out onto the public road have the

All operators of construction machinery and vehicles will be trained and competent and have valid

All site staff will be made aware that there are residents and employees in the surrounding areas

Approach signage with good sightlines will be provided at the site access route and site entrance.

Deliveries to site will be planned to arrive during working hours only, save for exceptional loads for

The access route to the construction site entrance and internal site routes will be kept in good

The contractor will put measures in place to mitigate any excessive noise for nearby properties that

Internal trafficked areas will be watered twice daily on dry days to reduce dust, if required. Vehicles delivering or collecting material with dust potential will be covered with tarpaulin at all times to restrict

A stringent 'clean as you go' policy will be implemented on site to ensure no loose material is left

Vehicle wheel washing facilities will be in place for vehicles leaving the construction site area.

A road sweep will be deployed if necessary to ensure the site access route between the site access

- Construction materials or equipment will not be stored outside the site boundary.
- Pedestrian/vehicular routes, crossing points, parking, loading and vehicle only areas will be clearly marked, signposted and segregated as appropriate.
- Where required site vehicles will be fitted with appropriate audible and visual devices.
- . Loading and unloading will be carried out in a designated area within the construction site boundary and reversing activities will be kept to a minimum.
- Loads will be checked prior to unloading and loads will be adequately secured for travel.
- Visitors to site will be accompanied and a safe area will be provided for visiting drivers during loading and unloading.
- Speed limits signage will be used to control speeds on the access route and within the construction . site.
- Construction vehicles and machinery will be maintained in good condition by a competent person as per the manufacturer's instructions. A dedicated area for maintenance work will be provided within the construction site area.
- All operators will wear personal protective equipment on-site and seat belts, where fitted by the • manufacturer, will be worn when operating equipment.

#### Air Quality SECTION 5:

#### Introduction 5.1

As construction activities are likely to generate some dust emissions, dust management requirements will be developed and implemented as part of the detailed Dust Mitigation Plan during the construction phase of the project. The potential for dust to be emitted depends on the type of construction activity being carried out, the dust controls in place and also the weather conditions, such as the level of rainfall, wind speed and direction.

A preliminary Dust Management Plan has been prepared by the DK Partnership as part of the Environmental Impact Assessment Report (EIAR) for the project and this plan is attached as Appendix 4 of this document for information purposes.

#### **Dust Sources** 5.2

The potential impact for dust depends on the distance to potentially sensitive locations, such as neighbouring residential and commercial properties in this case. The main activities that give rise to dust emissions during construction include the following:

- Excavations and Piling
- Materials handling and storage
- Temporary stockpiling of any earthworks material for re-use
- Movement of vehicles, particularly HGVs.

The mitigation measures set out below will be put in place during the construction phase. The level of dust control to be implemented will depend on the weather conditions, the specific construction activities (e.g. earthworks activities, construction activities and site vehicle movements) and the potential for dust nuisance as a result of those activities.

#### Mitigation Measures 5.3

Mitigation measures for dust control will include:

- The contractor shall prepare a dust minimisation plan which shall be communicated to all staff.
- the escape of dust.
- A stringent 'clean as you go' policy will be implemented on site to ensure no loose material is left on the ground within the construction access road and the public road.
- Vehicle wheel washing facilities will be in place for vehicles leaving the construction site area.
- Road junction will be kept clean at all times.
- stockpiles will be seeded to promote grass growth and reduce dust.
- Material handling systems and site stockpiling of materials will be laid out to minimise exposure to wind.
- or windy periods.

Further mitigation measures are outlined in the preliminary Dust Management Plan prepared by the DK Partnership, see Appendix 4.





Internal trafficked areas will be watered twice daily on dry days to reduce dust if required. Vehicles delivering or collecting material with dust potential will be covered with tarpaulin at all times to restrict

Bessborough public road will be inspected daily for cleanliness and a road sweep will be deployed if necessary to ensure the site access route between the site access and the Bessborough Road/Skehard

Topsoil stockpiles will be located in a location so as not to necessitate double handling and topsoil

Water misting or sprays will be used as required if particularly dusty activities are necessary during dry

#### Noise and Vibration Control Measures SECTION 6:

## 6.1 Introduction

In order to minimise the noise impact on the adjoining community, creche and residential properties it is proposed that heavy equipment and machinery including piling drills (if required), construction vehicles and generators only work between the hours detailed above. In addition, no deliveries and/or removal of materials will occur outside of these hours, save for exceptional situations when permissions will be sought from the Local Authority.

Normal working hours are outlined in Section 3.2 above, however these will be subject to detailed agreement with Cork City Council prior to commencement.

On occasions it may prove necessary to carry out construction activities outside of normal working hours. In such instances prior consultation will be carried out with Cork City Council, local residents, and businesses outlining the nature and reason for the works and their likely duration.

## 6.2 Noise and Vibration Regulations

During the works the contractor shall comply with the requirements of BS 5228-1:2009+ A1:2014 and BS 5228-2:2009 +A1:2014 (Code of Practice for Noise and Vibration Control on Construction and Open Sites) as well as Safety, Health and Welfare at Work (General Applications) Regulations 2007 Noise and Vibration.

## **Noise Limits**

Noise limits to be applied for the duration of the construction works are as set out in BS 5528. This applies a noise limit of 70dBA between 07:00 and 19:00 outside the nearest window of the occupied room closest to the site boundary in suburban areas away from main road traffic and industrial noise.

For the duration of the construction works, a daytime noise limit (07:00 to 19:00) of 70 dBA shall apply (in accordance with BS 5228).

## **Vibration Limits**

Vibration limits to be applied for the duration of construction works are as set out in BS 5228 (Code of Practice for Vibration Control on Construction and Open Sites) and BS 7385:1993 (Evaluation and measurement for vibration in buildings Part 2: Guide to daameg levels from ground borne vibration). Allowable vibration during the construction phase is summarised below in Figure 5.1.

Allowable vibration (in terms of peak particle velocity) at the closest part of sensitive property to the source of vibration, at a frequency of ^a					
Less than 4Hz¤	15 to 40Hz¤	40Hz (and above)¤			
12 mm/sa	12.5 mm/sa	50 mm/sa			

## Figure 6-1: Guidelines for Allowable Vibration

#### 6.3 Mitigation Measures

In particular, the following practices are to be implemented during the construction phase:

- Limiting the hours during which site activities that are likely to create high levels of noise and vibration are permitted
- Erection of a barrier along the site boundary (e.g. standard 2.4m high construction hoarding and additional, higher hoarding at boundaries with adjacent existing buildings) to remove direct line of sight

between noise sources and receiver when construction works are being carried out in proximity to noise sensitive receivers

- residents
- Appoint a site representative (SEM) responsible for matters relating to noise
- Selection of plant with low inherent potential for generation of noise
- Siting of noisy plant as far away from sensitive properties as permitted by site constraints and implementation of noise reduction measures such as acoustic enclosures when required
- Avoidance of unnecessary revving of engines and switching off of plant when idle All plant and equipment will be maintained in good working order in accordance with BS.5228 in order
- to minimise air and noise emissions.
- accessories shall be used.
- Noise monitors will be erected and data collected to assess sound levels.
- Ear protection zones will be established and all personnel will be trained on ear protection.





Establish channels of communication between the contractor, local authority and local businesses and

All ancillary pneumatic percussive tools shall be fitted with mufflers or silencers of the type recommended by the manufacturers, and where commercially available, dampening tools and

## SECTION 7: Water and Wastewater Controls

## 7.1 Introduction

All works carried out as part of these works will comply with all Statutory Legislation including the Local Government (Water Pollution) Act, 1977 and 1990 (as amended) and the contractor will cooperate in-full with Irish Water and the Environmental Department of Cork City Council. There is no immediate watercourse in the vicinity of the site. The Douglas Estuary is located approximately 250m south of the site on the southern side of the N40.

The following description outlines the proposed water/wastewater works to be carried out during Phase 2:

- Surface Water The proposed surface water network will include a drainage pipe network, attenuation storage and SuDS features. The restricted discharge from the site will be conveyed in a new surface water pipe laid from the western boundary of the site in a westerly direction across the Bessborough site to connect to an existing 750mm diameter surface water sewer upstream of its connection to the 1350mm diameter surface water pipe which discharges to the Douglas Estuary south of the N40.
- Foul Drainage Wastewater collection within the proposed development will be via a network of 150mm and 225mm diameter gravity sewers, which will direct the flows to the southwest corner of the site. A new gravity sewer will then convey the flows in a westerly direction and will connect directly to the Bessborough wastewater pumping station.
- Potable Water A 300mm diameter ductile iron watermain is located in Bessborough Road to the north of the site. Irish Water have advised that the connection to serve the development is to be made to this existing main.

The mitigation measures outlined below provide the water management controls required to be implemented by potential Contractors and Sub-contractors and set out the proposed procedures and operations to be utilised on the proposed development to mitigate against any water related environmental impacts. The mitigation and control measures outlined herein will be employed on site during the construction phase of the development.

The main areas of water related concerns covered by this section are:

- Pre-Construction (Inc Site Clearance/Tree felling)
- Construction Phase drainage controls
- Earthworks (i.e. infrastructure & drainage) and surface water quality protection
- Temporary stockpiles water management and controls; and
- Fuel usage, storage and management.

#### **Mitigation Measures** 7.2

Surface water runoff during site clearance and construction stage can be potentially contaminated. The most likely forms of contamination are 'siltation' and spillage. Siltation occurs when soil and particulate matter are washed away in rainfall events by rainwater. Siltation will be mitigated on the project using stilling basins and strainers within the site to prevent silt being lost to the drainage network.

## Excavation, Erosion and Sediment Control

- Measures will be implemented to capture and treat sediment laden water run off (e.g. silt traps; siltbuster)
- The area of exposed ground will be minimised and as much vegetation as possible will be retained for as long as is practical
- Delay clearing and topsoil stripping of each area until work is ready to proceed.
- Close and backfill trenches as soon as practically possible
- Any earthworks temporary stockpile areas will require silt fencing to be installed.



- scour and erosion
- controlled rate.
- Environment Section prior to commencing works on site.

As fuels and oils are required during construction stage, it is necessary to mitigate the possibility of there being an accidental leakage of these liquids. All fuels stored on site will be bunded and all chemicals will be stored in an appropriate tank. Should any spillage occur on site during construction, it is likely that there will be a localised moderate impact in the short term on the environment.

### **Accidental Spills and Leaks**

- All oils, fuels, paints and other chemicals will be stored in a secure bunded hardstand (impervious) area
- is also remote from any surface water inlets.
- equipment.

### Concrete

- take place off site and any excess concrete will not be disposed of on site
- Pumped concrete will be monitored to ensure there is no accidental discharge
- areas.

## **Wheel Wash Areas**

 Discharge from any vehicle wheel wash areas is to be directed to onsite settlement areas, debris and sediment captured by vehicle wheel washes are to be disposed off-site at a licensed facility.

Through consultation with the Site Manager (SM) /Site Environmental Manager (SEM), a schedule for surface water quality monitoring will be drawn up. This will be finalised prior to the start of construction. Where monitoring parameters are found to exceed the standards laid down, the SM/SEM will initiate and report corrective actions. This may necessitate the alteration of the environmental control measures and in turn the relevant construction method statement.

It is proposed to implement a programme for monitoring water quality at the outfall tie-in as part of the construction of this development, in agreement with the Planning Authority. This programme and sampling requirements will be agreed with Cork City Council.

Any on-site settlement areas are to include geotextile liners and riprapped inlets and outlets to prevent

Surface water runoff from areas stripped of topsoil and surface water collected in excavations will be directed to on-site settlement areas, at the lower, south west end of the site, where measures will be implemented to capture and treat sediment laden runoff prior to discharge of surface water at a

Surface water discharge points during the construction phase are to be agreed Cork City Council's

Refuelling and servicing of construction machinery will take place in a designated hard stand area which

A response procedure will be put in place to deal with any accidental pollution events and spillage kits will be available and construction staff will be familiar with the emergency procedures and use of

Concrete batching will take place on-site and offsite. Wash down and wash out of concrete trucks will

Mixer washings are not to be discharged into surface water drains and will be directed to settlement

## SECTION 8: Landscape Management

During Phase 2 construction, site security fencing and solid hoarding will be used where appropriate to restrict visibility, minimise noise pollution and restrict visibility into the site, minimising the temporary landscape and visual impacts. There is a significant area of existing vegetation/trees to the south and west of the site and along the routes of foul and surface-water outfall/connections. These areas will require protection measures to be employed during construction works, particularly during the construction of the bridge and foul and storm drainage outfalls. It is expected that fifty-four trees will be required to be removed as part of the development of this phase.

The mitigation measures set out below will be implemented to minimise the impact on any trees/vegetation.

Although the removal of some trees will be required for the construction of the pedestrian/cycle bridge and the trenching and construction of watermains, foul and surface-water drainage, such tree removal will be restricted to that identified for removal in the application.

- All mitigation measures to be put in place to protect such trees and vegetation shall be prepared in consultation with a qualified Arborist, who shall supervise works for which an Arboriculture Method Statement is required.
- The specific Arboriculture Method Statement shall be prepared for any works within the root protection area of any tree to be retained and the measures outlined shall be strictly enforced on site.
- Trees will be protected in accordance with BS: 5837:2012 *Trees in relation to design, demolition and construction. Recommendations* and any further agreed procedures.
- The construction works for the new ped/cycle bridge shall be fenced off with solid hoarding and protected from the public. The contractor will liaise and co-ordinate these works with the Cork City Council.
- Reinstatement of trees and vegetation will be undertaken by a suitably qualified landscape contractor.

## SECTION 9: Archaeology & Heritage

## 9.1 Pre-Construction

Given the historic and sensitive nature of the site, prior to any construction commencing, an archaeological and heritage assessment and surveys should be carried to include advance archaeological testing across the footprint of the development where machine or hand excavated test trenches allow for the early indication of relevant material. This allows for informed decisions to be made as to how best to progress with construction works and deal with any discovered archaeological finds should they arise.

Based on the results of the above assessments/surveys, detailed monitoring of all groundworks associated with the development may be recommended, with the provision for full excavation of any archaeologically significant material uncovered.

## 9.2 During Construction

Following the archaeological and heritage assessment, during the construction process, if deemed necessary, archaeological monitoring will be carried out where the construction works are suspected to be in the proximity to an archaeological site. This may involve a forensic archaeologist or human osteoarchaeologist maintaining a watching brief while groundworks are taking place in order to identify and record any archaeological remains that may be present. In the event of archaeological features or material being uncovered during construction monitoring, it is important that all machine work in the immediate area ceases to allow the archaeologist to assess, excavate and record any findings.

Should archaeological features or material be uncovered, adequate funds to cover excavation, fencing, post-excavation analysis and reporting will be made available. This work should be done under license in accordance with Section 26 of the National Monuments Act 1930-2014 and with a method statement agreed in advance with the National Monuments Service (Dept. of Culture, Heritage and the Gaeltacht) and the National Museum of Ireland.

## 9.3 Mitigation Measures

A programme of archaeological supervision/monitoring of all ground works will be undertaken by a suitablyqualified archaeologist. Given the developed nature of the portions of the site (especially within 'The Farm') and previous programmes of archaeological investigations (within the 'The Meadows'), the archaeological risk is considered to be low. In the unlikely event of an archaeological discovery, the National Monuments Service and Cork City Council will be consulted to agree how the encountered archaeological remains are recorded and resolved.

Site development works (especially ground reduction work) will be monitored by a forensic specialist and osteoarchaeologist to allow for the identification any previously-unrecorded burials or human remains. In the event of such a discovery, An Garda Síochána will be immediately notified and the localised works in the affected area will be suspended subject to the direction of An Garda Síochána.

In relation to works to historic boundary walls, it is recommended that interventions to historic masonry boundary walls have intentionally been kept to a minimum. Where repair or rebuilding works to historic masonry walls are required (including the creation of a new pedestrian entrance in the boundary wall adjacent to the historic entrance to Bessborough Estate), such works will be undertaken by suitably-experienced conservation contractors with proven experience in the use of traditional lime mortars and rubble masonry.





## SECTION 10: Waste Management

## 10.1 Introduction

A detailed Construction Waste Management Plan will be agreed with Cork City Council and put in place in order to control waste management on site, ensure segregation of waste streams and minimise construction waste costs. Waste arising from the site will be considered in relation to the waste management hierarchy of prevention, reduce, reuse, recycle, energy recovery and disposal.

Construction and demolition waste is the largest "municipal" waste stream contributing to the current pressure on landfill facilities in the region. Unsustainable management and inappropriate disposal of this waste stream can result in impact on natural resources and lead to environmental pollution. The main source of waste material at the site will be construction waste.

Waste is defined as any substances or object belonging to a category of waste specified in the First Schedule (of the Waste Management Act 1996) or included in the European Waste Catalogue, which the holder discards or intends or is required to discard and anything which is discarded or otherwise dealt with as if it were waste shall be presumed to be waste until the contrary is proved.

There are two main types of construction waste - Hazardous and Non-hazardous as detailed below:

### **Non-hazardous**

- **Timber Waste**
- Scrap Metal
- Plastic
- Paper / Cardboard •
- Canteen Waste
- Litter

### Hazardous

Hazardous Wastes are defined as wastes which can have a harmful effect on the environment and on human health as they exhibit ignitability, reactivity, corrosivity and/or toxicity and/or are listed as hazardous by the European Waste Catalogue and/or may be identified as hazardous by application of the EPA Waste Characterisation Tool compiled by The Clean Technology Centre.

The hazardous wastes that may be experienced at a development of this nature are as follows:

- Adhesives and Sealants
- Aerosols
- **Batteries**
- Chemicals
- **Cleaning Products**
- Oil (Contaminated absorbent Material or debris) •
- Paints and Thinner
- Fuels (hydrocarbons such as diesel)
- Concrete waste

The Farm (Phase 2) development will result in the generation of waste material from the following sources: Removal of existing boundaries 

- Demolition of existing buildings and sheds
- Excavation of soil for site access, to foundations, ductwork and sewers/watermains
- Excavation of stone / made ground at infrastructure tie-ins to existing water mains, sewers, gas etc.
- Surplus material (off-cuts, damaged materials, packaging etc.) generated during the construction of the new development.



The Waste Management Hierarchy states that the most preferred option for waste management is prevention and minimisation of waste, followed by reuse and recycling/recovery, energy recovery (i.e. incineration) and, least favoured of all, disposal. The excavations are required to facilitate construction so the preferred option (prevention and minimisation) cannot be accommodated for the bulk excavation phase.

The next option (beneficial reuse) may be possible for some and potentially all of the inert natural material (Category A1). This material could be used as fill material in other construction projects or engineering fill for waste licensed sites. Beneficial reuse of surplus excavation material as engineering fill may be subject to further testing to determine if materials meet the specific engineering standards for their proposed enduse.

Any nearby sites requiring clean fill/capping material will be contacted to investigate reuse opportunities for clean and inert material. If any of the material is to be reused on another site European Communities (Waste Directive) Regulations 2011, Article 27 requires that certain conditions are met and that by-product decisions are made to the EPA, via their online notification form.

If the material is deemed to be a waste, removal and reuse/recycling/ recovery/disposal of the material will be carried out in accordance with the Waste Management Acts 1996-2008, the Waste Management (Collection Permit) Regulations 2007 (as amended) the Waste Management (Facility Permit & Registration) Regulations 2007 (as amended). The volume of waste removed will dictate whether a Certificate of Registration (COR), Waste Facility Permit or Waste Licence is required by the receiving facility.

Once all available beneficial reuse options have been exhausted, the options of recycling and recovery at waste permitted and licensed sites will be considered. The option of disposal of inert natural material to landfill will only be considered once all available reuse options have been explored and where capacity cannot be secured at appropriately permitted/licensed facilities for recycling or recovery purposes.

Any soil/subsoil that is deemed to be contaminated will be stored separately to the clean and inert soil/subsoil. The material will be appropriately tested and classified as either non-hazardous or hazardous in accordance with the EPA publication 'Waste Classification: List of Waste & Determining if Waste is Hazardous or Non-Hazardous' using the HazWasteOnline application (or similar approved classification method). The material will then need to be classified as clean, inert, non-hazardous or hazardous in accordance with the EC Council Decision 2003/33/EC.

The highest volume of materials generated will be topsoil and subsoil/stones from site clearance to accommodate access routes, bridge construction, footpaths, services, and foundation excavation to enable construction of the apartment blocks. Some of the material will be re-used on site, however, some will be removed off-site. Given that the proposed developable area is 4.28 hectares, the following estimations of excavated material have been calculated:

- An average depth of 100 - 200mm for topsoil strip will generate approx. 2,950m3.
- generate approx.1,200m3 of material.
- Subsoil excavation to provide SUDS attenuation area amounts to approx. 1,050m3.
- The total subsoil excavation is therefore approximately 7,900m3.



Soil will be excavated to facilitate construction of foundations, access roads, the installation of site services

Subsoil excavation for access route and footpath construction, piling and excavation for foundations will

Excavation for watermains, foul and surface water sewer will generate approx. 5,650m3 of material.

Approx. 1,500m3 of topsoil and 3,170m3 of subsoil will be required for backfilling the SUDS attenuation and trench excavations. As such, it is estimated that approximately 6,180m3 will need to be transported off-site for reuse/recycling. (See Table 9.1).

Also, the demolition of the buildings will generate quantities of rubble/stone, structural steel and corrugated metal roof sheeting. It is unlikely that any of this material will be re-usable on site so this material will have to be taken off-site to approved recycling/recovery facilities. Surveys to date have established that there is no asbestos materials in these existing buildings and this will be confirmed at pre-demolition stage.

An estimated 320m3 of rubble/stone will be generated, with approximately 6.5 tonnes of structural steel and 5.0 tonnes of corrugated roof sheeting.

A standard 4-axle rigid construction tipper capacity weight is 20 tonnes which is equivalent to approximately 11 cubic metres of soil. Therefore, approximately 560 HGV loads will be required to export the excess soil off-site, while a further 35 HGV loads will be required to export the demolition waste generated.

Table 10-1: Cut and Fill Calculation

Item	Excavate	Reuse	Export
Topsoil Strip	2,950m3		
Topsoil Reuse		1,500m3	
Topsoil for Export			1,450m3
Subsoil from Excavation	7,900m3		
Fill Required		3,170m3	
Subsoil Excess for Export			4,730m3
Total Surplus for Export off- site			6,180m3

## SECTION 11: Emergency Planning and Response

A set of standardised emergency response procedures will govern the management of emergency incidents. The contractor will be required to outline emergency incident response procedures in the detailed CEMP and to develop an Emergency Incident Response Plan. These procedures will be as follows:

- Emergency preparedness and response procedure (incl. emergency phone numbers)
- Incident investigation procedure
- Nonconformity, corrective action and preventative action
- Spillage containment procedure
- Pollution prevention programme and corrective action reporting

In the event of spillages or other incidents, steps will be taken to prevent environmental pollution, for example through protection of drains by use of drain covers or booms, use of absorbent granules following a fuel or oil / chemical spill and turning off equipment or other sources of noise or dust.

Once the situation has been rectified, full details the incident and remedial actions undertaken will be provided to the City Council and relevant authorities and recorded appropriately.

Appropriate measures to prevent a recurrence of such incidents will be developed in consultation with these authorities.





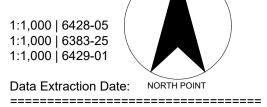
## SECTION 12: Inspections and Monitoring

The environmental performance of the contractor will be monitored through site inspections. Monitoring will be carried out in accordance with the requirements of the EIAR so that construction activities are undertaken in a manner that does not give rise to significant negative effects. Suitable monitoring programmes will need to be developed, implemented, documented, and assessed in accordance with the measures outlined in the detailed CEMP and EIAR.

The results of all environmental monitoring activities will be reviewed by the Site Environmental Manager on an ongoing basis to enable trends to be identified and corrective actions to be implemented as necessary.

Routine inspections of construction activities will be carried out by the Site Environmental Manager on a daily basis to ensure all necessary environmental measures relevant to the construction activities are being effectively implemented by construction staff. Detailed inspections should be carried out weekly which would be appropriately documented by the Environmental Manager. The inspection routine should include:

- Summary of compliance/non-compliance with the detailed CEMP
- Results and interpretation of monitoring programmes
- Key issues noted during inspections
- Summary record of non-conformities, incidents and corrective actions
- Summary of environmental complaints and queries received in relation to environmental matters; and
- Summary record of environmental training undertaken by staff.




## Appendix 1 PROPOSED MASTERPLAN LAYOUT



## ^C ORDNANCE SURVEY MAP

## 1:1,000 | 6428-05 1:1,000 | 6383-25 1:1,000 | 6429-01



Date= 18-Mar-2021

Source Data Release: _____ DCLMS Release V1.138.111

Product Version:

_____ Version= 1.3

License / Copyright:

_____ Ordnance Survey Ireland Terms of Use apply. Please visit

www.osi.ie/about/terms-conditions

Ordnance Survey Ireland, 2021

Compiled and published by Ordnance Survey Ireland, Phoenix Park, Dublin 8, Ireland.

Unauthorised reproduction infringes

Ordnance Survey Ireland and Government of Ireland copyright.

All rights reserved. No part of this publication

may be copied, reproduced or transmitted in any form or by any means without the prior

written permission of the copyright owners.

The representation on this map of a road, track or footpath is not evidence of the existence of a right of way.

Ordnance Survey maps never show legal property boundaries, nor do they show ownership of physical features.

© Suirbhéireacht Ordanáis Éireann, 2021

Arna thiomsú agus arna fhoilsiú ag Suirbhéireacht Ordanáis Éireann, Páirc an Fhionnuisce, Baile Átha Cliath 8, Éire.

Sáraíonn atáirgeadh neamhúdaraithe cóipcheart Shuirbhéireacht Ordanáis Éireann agus

Rialtas na hÉireann.

Gach cead ar cosnamh. Ní ceadmhach aon chuid den fhoilseachán seo a chóipeáil, a atáirgeadh nó a tharchur in aon fhoirm ná ar aon

bhealach gan cead i scríbhinn roimh ré ó úinéirí an chóipchirt.

Ní hionann bóthar, bealach nó cosán a bheith ar an léarscáil seo agus fianaise ar chead slí.

Ní thaispeánann léarscail de chuid Ordanáis Shuirbheireacht na hÉireann teorann phointí dleathúil de mhaoin riamh, ná úinéireacht de ghnéithe fhisiciúla.

place makers ESTUARY VIEW ENT. 2020 LTD. DRAWING DESCRIPTION: SITE MASTER PLAN 03.2022 OVERSEEN BY : JJ APPROVED BY : GB DRAWING NO. : SB-2020-107-805

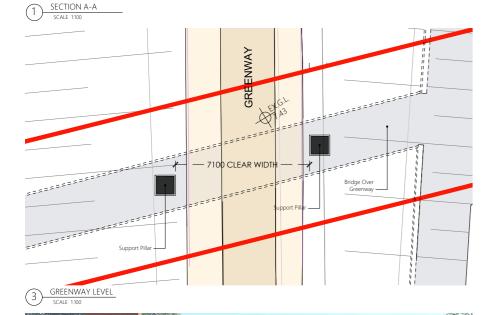
28,Richmond Hill, Bellsfield, Cork, Ireland t: + 353 (0)21 23988 55 f: + 353 (0)21 23988 27 e: info@shipseybarry.com www.shipseybarry.com COPYRIGHT of SHiPSEY BARRY Ltd. This drawing or design may not be reproduced without express written permission of SHiPSEYBARRY Ltd

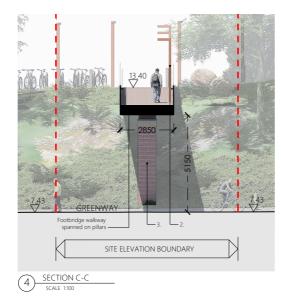




## Appendix 3 PROPOSED PEDESTRIAN/CYCLE BRIDGE




(5)


3. BRICK BRIDGE PILLARS

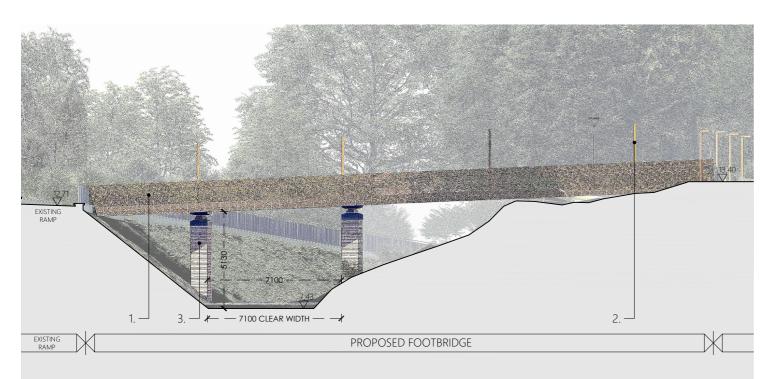






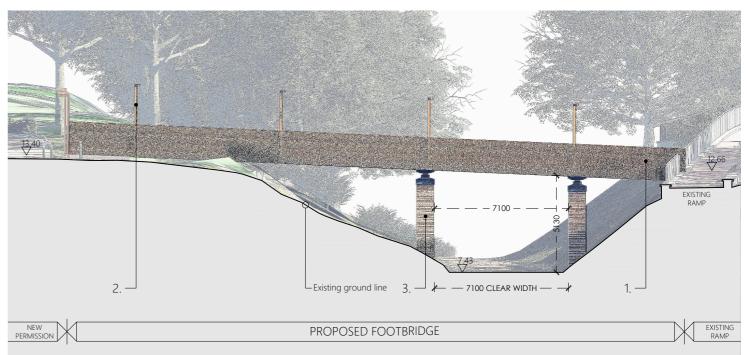





 $L_2 L$ 

SITE ELEVATION BOUNDARY

Footbridge walkwa spanned on pillars


XISTING RAN

6 SECTION D-D SCALE 1:100











### Residential development at Bessborough, Ballinure, Blackrock, Cork EIAR

- Ensure an adequate water supply on the site for effective dust / particulate matter suppression.
- Use enclosed chutes and conveyors and covered skips. •
- Avoid dry sweeping of large areas. •
- Minimise drop heights from conveyors and other loading or handling equipment and use fine • water sprays on such equipment wherever appropriate.
- soon as reasonably practicable after the event.

### Waste management

Avoid bonfires and burning of waste materials.

### **Demolition activities**

- where possible, to provide a screen against dust).
- Ensure effective water suppression is used during demolition operations. •
- Avoid explosive blasting, using appropriate manual or mechanical alternatives. •
- Bag and remove any biological debris or damp down such material before demolition. •

### Earthwork's activities

- Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as • practicable.
- Only remove the cover in small areas during work and not all at once. •
- suppress dust.

### **Construction activities**

- Ensure aggregates are stored in bunded areas and are not allowed to dry out unless this is required for a particular process.
- in with suitable emission control systems to prevent escape of material and overfilling during delivery.
- For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately.
- During periods of very high winds (gales), construction activities likely to generate significant dust emissions should be postponed until the gale has subsided.

## Appendix A **Dust Management Plan**

### Site management

The aim is to ensure good site management by avoiding dust becoming airborne at source. This will be done through good design and effective control strategies. At the construction planning stage, the siting of activities and storage piles will take note of the location of sensitive receptors and prevailing wind directions. As the prevailing wind is predominantly south-westerly, locating construction compounds and storage piles downwind of sensitive receptors will minimise the potential for dust nuisance to occur at sensitive receptors. The Principal Contractor or equivalent must ensure that the proposed mitigation measures are implemented, and that dust impacts and nuisance are minimised.

- It is recommended that community engagement be undertaken before works commence on site • explaining the nature and duration of the works to local residents and businesses.
- The name and contact details of a person to contact regarding air guality and dust issues shall be displayed on the site boundary. A complaints register will be kept on site detailing all sources of complaints received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out.
- Regular inspections of the site and boundary should be carried out to monitor dust, records and notes on these inspections should be logged.
- Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and . the action taken to resolve the situation in the logbook.
- In the event of dust nuisance occurring outside the site boundary, site activities will be reviewed, ٠ and satisfactory procedures implemented to rectify the problem.

## Preparing and maintaining the site

- Plan site layout so that machinery and dust causing activities are located away from receptors, as • far as is possible.
- Erect solid screens or barriers around dusty activities or the site boundary that are at least as high • as any stockpiles on site if necessary.
- Fully enclose site or specific operations where there is a high potential for dust production and the site is actives for an extensive period
- Avoid site runoff of water or mud. •
- Keep site fencing, barriers and scaffolding clean using wet methods.
- Remove materials that have a potential to produce dust from site as soon as possible, unless • being re-used on site. If they are being re-used on-site cover or fence stockpiles to prevent wind whipping.

## Site roads and operating vehicles / machinery

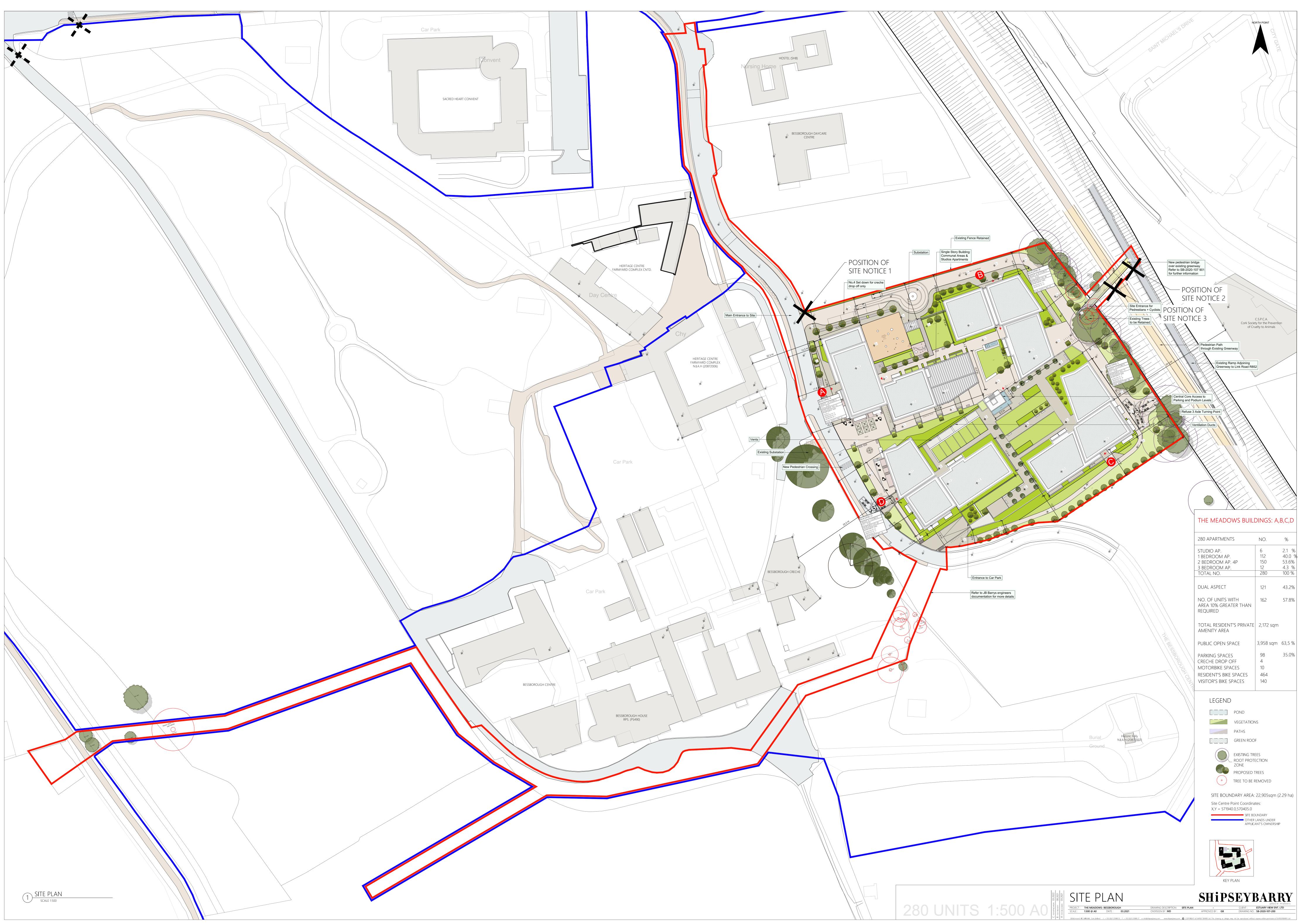
- A speed restriction of 20 km/hr will be applied as an effective control measure for dust for on-site vehicles using unpaved site roads.
- Access gates to the site shall be located at least 10m from sensitive receptors where possible. •
- Bowsers or suitable watering equipment will be available during periods of dry weather. Watering shall be conducted during sustained dry periods to ensure that unpaved areas are kept moist.
- Any hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads shall be restricted to essential site traffic only.
- Ensure all vehicles switch off engines when stationary. ٠
- Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.

## Site traffic on public roads

- Vehicles delivering material with potential for dust emissions to an off-site location shall be enclosed or covered with tarpaulin at all times.
- At the main construction traffic exit, a wheel wash facility shall be installed. All trucks leaving the ٠ site must pass through the wheel wash. The wheel wash will be located sufficiently far from the exit to allow trucks to 'drip off' prior to exit. In addition, public roads outside the site shall be regularly inspected for cleanliness and cleaned as necessary.
- Vehicles onsite shall turn off engines when not in use to prevent idling emissions. •

### Onsite operations

Only use cutting, grinding, or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays.


Ensure equipment is readily available on site to clean any dry spillages and clean up spillages as

Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building

During dry and windy periods, and when there is a likelihood of dust nuisance, a bowser or similar will operate to ensure moisture content is high enough to increase the stability of the soil and thus

Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored

• Appendix 2-3 – Phase 1 'The Meadows' Proposed Site Layout – prepared by Shipsey Barry Architects



• Appendix 2-4 – Phase 2 'The Farm' Proposed Site Layout – prepared by Shipsey Barry Architects



• Appendix 2-5 - Phase 1 'The Meadows' Primary Planting Plan prepared by Ilsa Rutgers Landscape Architecture



## OLD RAILWAY GREENWAY linking Cork to Passage West

# PROPOSED NEW PEDESTRIAN BRIDGE OVER PASSAGE WEST GREENWAY TO CONNECT TO EXISTING RAMP

TREE AND HEDGING LEGEND

		TREE AND HEDGING	LEGEND	
Symbol		Species and size		
Tag: No.		Existing Trees to be protected during construction if within the hoarded site. Refer to Arboriculturist's Report NOTE: Retained trees to be protected in strict accordance with BS 5837 (2012)		
		Existing Tree to be removed as part of proposed works associated with this development. Refer to Aboriculturist's Report.		
		Rough grass		
		EVERGREEN HEDGING Taxus baccata (Native Yew) for med Buxus semprevirons for low height	ium height	
		NATIVE DECIDUOUS HEDGING Crataegus monogyna (Hawthorn)		
		ROOT PROTECTION BARRIER		
Symbol	Sp	pecies and size	quantity	
Or	Da 20-	<i>iercus robur</i> iir ghallda / Common Oak 22 cm girth, 2m clear stem, im tall, rootball	19	
P ⁵	Pé   16-	nus sylvestris ine albanach / Scot's Pine 18 cm girth, 2m clear stem, m tall, rootball	5	
Bpen	Be 16-	<i>tula pendula</i> ith gheal / Silver Birch 18 cm girth, 2m clear stem, 5 m tall, rootball	7	
1°	Liı 20	<i>ia cordata 'Greenspire'</i> me tree -24 cm girth, 2m clear stem, 5m tall, rootball	9	
Hc 18		<i>iercus ilex</i> Im Oak (evergreen) -22 cm girth, 2m clear stem, im tall, rootball	4	
Tbf	Iris	<i>xus baccata 'fastigiata'</i> sh Yew (evergreen) -18 cm girth, 3-4m tall, container	6	
Sa Co	So Mc 18- 3.5	8		
opn op	Pir 18-	iercus palustris n Oak -20 cm girth, 2m clear stem, im tall, rootball	7	
C _p	Ca Ho 16- 4 ta	19		
We	<i>Ma</i> Ev 20- 4-5	3		
A ¹		nelanchier lamarckii owy Mespilus	21	

## Snowy Mespilus 14-16 cm girth, multistemmed, 4 tall, grown in planter containers 21

## ilsa rutgers landscape architecture

🖩 ARCHITECTURAL DESIGN 📲 LANDSCAPE DESIGN

Project:	BESSBOROUGH RESIDENTIAL PHASE 1 'The Meadows'				
Drawing:	LANDSCAPE DESIGN - PRIMARY PLANTING				
Date:	April 2021 Drawn by: IR Scale: 1:250@A1 / 1:500@A3				
Client:	Estuary View Enterprises 2020 Ltd.	Job No. 210221	Drg No. 2500	P.0	

• Appendix 2-6 - Phase 2 'The Farm' Primary Planting Plan prepared by Ilsa Rutgers Landscape Architecture



• Appendix 2-7 - Phase 1 'The Meadows' Services Infrastructure Report prepared JB Barry and Partners Limited, Consultant Engineers

Client: Estuary View Enterprises 2020 Ltd.

Project:

# Bessborough SHD Development

Report:

# Services Infrastructure Report





# **Document Control Sheet**

Client:	Estuary View Enterprises 2020 Ltd.	
Project Title: Bessborough SHD Development		
Document Title:         Services Infrastructure Report           File Name:         21207-JBB-PH1-XX-RP-C-01003		

Table of Contents (incl. Y/N)	List of Tables (incl. Y/N)	List of Figures (incl. Y/N)	Pages of Text (No.)	Appendices (No.)
Y	Y	Y	17	12

Document Revision			Document Verification				
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
06/08/2021	P01	S3	DOB	RS	TF	TF	N/A
21/02/2022	P02	S3	DOB	RS	TF	TF	N/A
21/03/2022	P03	S3	DOB	RS	TF	TF	N/A

# List of Tables

	_
Table 2-1: Foul Sewer Size/Gradient Criteria	
Table 2-2: Foul Flow Calculations for Residential Development	7
Table 2-3: Foul Flow Calculations for Commercial Development	8
Table 3-1: HR Wallingford Design Value Outputs	11
Table 3-2: Surface Areas	13
Table 3-3: Summary of Attenuation Requirements and Proposals	15
Table 3-4: Pollution Hazard Indices for Different Land Uses (Source: CIRIA C753)	15
Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters (Source: CIRIA C753)	15
Table 4-1: Water Demand for Residential Development	18
Table 4-2: Water Demand for Commercial development	18

# Table of Contents

SECTION 1:	INTRODUCTION	4
1.1	Scope of the Report	4
1.2	Site Location	4
1.3	Proposed Development Brief	4
SECTION 2:	WASTEWATER COLLECTION & DISPOSAL	6
2.1	Existing Wastewater Network	6
2.2	Pre-Connection Enquiry Stage	
2.3	Design Acceptance Stage	6
2.4	Loading Calculations	7
SECTION 3:	STORMWATER COLLECTION & DISPOSAL	9
3.1	Existing Hydrology	9
3.2	Existing Stormwater Network	
3.3	Greenfield Runoff Rate	11
3.4	Proposed Development Surface Water Management System	11
3.5	Conveyance of Surface Water Outflow to Final Discharge Location	16
SECTION 4:	WATER SUPPLY 1	
4.1	Existing Watermain Network	17
4.2	Pre-Connection Enquiry Stage	17
4.3	Design Acceptance Stage	17
4.4	Loading Calculations	17

# Appendices

Appendix 1: Proposed Site Layout Plan Appendix 2: Cork City Council - Existing Wastewater Network Appendix 3: As-Built Local Drainage Network
Appendix 4: Irish Water - Confirmation of Feasibility & Statement of Design Acceptance Appendix 5: Foul Sewer – MicroDrainage Calculations
Appendix 5: Pour Sewer – Microbranage Calculations Appendix 6: Priority Geotechnical Ltd. – Ground Investigations
Appendix 7: Cork City Council – Existing Stormwater Network
Appendix 8: HR Wallingford – Greenfield Runoff Estimation Appendix 9: Cork City Council Correspondence
Appendix 3: Cork City Council Correspondence Appendix 10: Surface Water - MicroDrainage Calculations Appendix 11: Attenuation Estimates, Storage Tank Sizing Appendix 12: Cork City Council - Existing watermain Records

# List of Figures

Figure 1-1: Location of Proposed Development	5
Figure 1-2: Phasing of Proposed Development	
Figure 3-1: Hydrological Features of the Area	
Figure 3-2: Soil Permeability	. 10
Figure 3-3: Groundwater Vulnerability	. 10
Figure 3-4: Surface Water Catchment Areas	.14

# SECTION 1: INTRODUCTION

### 1.1 Scope of the Report

This Services Infrastructure Report outlines the proposed means of servicing the development with wastewater collection and disposal, stormwater management and disposal and water supply infrastructure. A Flood Risk Assessment is provided with this submission under a separate cover. Roads and traffic issues are dealt with separately by MHL Consulting Engineers on behalf of the Applicant and their submission should be consulted for such details.

The following should be read in conjunction with the engineering drawings which illustrate the servicing proposals and with the submissions by other members of the Applicant's design team.

### 1.2 Site Location

The proposed development is located at Phase 1- 'The Meadows', Bessborough, Ballinure, Blackrock, Cork, on a circa 2.29-hectare site, with a developable area of 1.53-hectares, see Figure 1.1. This proposed development will form Phase 1 of a larger development on a circa 16.59-hectare site, see Figure 1.2 for outline phasing proposals.

The Passage West Greenway forms the eastern boundary of the proposed development site, and the South Ring Road (N40) is located approximately 200m from the southern boundary of the proposed development. The western and northern boundaries of the Phase 1 site are formed by the buildings, outbuildings, roads and open spaces of the overall Bessborough complex. The site slopes gently from north to south, with ground levels falling from approximately 14.50 m OD to 11.25 m OD across the site.

### 1.3 Proposed Development Brief

This report is prepared in support of a Strategic Housing Development (SHD) planning application by Estuary View Enterprises 2020 Ltd.

The development will consist of the construction of a residential development of 280 no. residential apartment units with supporting tenant amenity facilities, café, crèche, and all ancillary site development works. The proposed development includes 280 no. apartments to be provided as follows: Block A (6 no. studio apartments, 14 no. 1-bedroom, 34 no. 2-bedroom & 1 no. 3-bedroom over 1-6 storeys), Block B (37 no. 1-bedroom & 49 no. 2-bedroom over 6-10 storeys), Block C (31 no. 1-bedroom, 36 no. 2-bedroom & 6 no. 3-bedroom over 5-9 storeys) and Block D (30 no. 1-bedroom, 31 no. 2-bedroom & 5 no. 3-bedroom over 6-7 storeys).

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas.

The proposed development provides for outdoor amenity areas, landscaping, under-podium and street car parking, bicycle parking, bin stores, 2 no. substations one of which is single storey free standing, a single storey carpark access building, public lighting, roof mounted solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road.



Figure 1-1: Location of Proposed Development



Figure 1-2: Phasing of Proposed Development



# SECTION 2: WASTEWATER COLLECTION & DISPOSAL

#### Existing Wastewater Network 2.1

Cork City Council / Irish Water drainage records show an existing 375/450mmØ foul sewer located to the west of the Phase 3 lands which runs north to south before discharging to the Bessborough Wastewater Pumping Station (WWPS). From the WWPS a 350mmØ rising main heads east crossing through the greenfield area in the ownership of the applicant before turning north along the Passage West Greenway, see Appendix 2.

A feasibility study of the local area has revealed that there is an existing a 150mmØ foul sewer in the road adjacent to the western boundary of the Phase 1 site which runs north to south before turning in a westerly direction and connecting to the WWPS described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

### 2.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) issued a Confirmation of Feasibility (COF) stating that the site can be serviced by its wastewater infrastructure network. This COF is included in Appendix 4.

IW have advised that the proposed connection should be made directly to the WWPS, via a new inlet sewer. The WWPS is almost at design loading capacity. However, Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development and subsequent phases of this development. This upgrade project is scheduled to be completed by Q4 2022 and the proposed connection could be completed as soon as possibly practicable after this date.

#### 2.3 Design Acceptance Stage

The proposed designs were progressed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

The wastewater collection within the development will be via a network of gravity sewers. The wastewater flows will be collected and will be conveyed in in a westerly direction, from the south-western boundary of the proposed development site and will connect directly to the WWPS. A legal wayleave is in place across the Bessborough lands immediately to the west of the proposed development site to facilitate this connection.

The final connection from the western edge of the lands to the existing WWPS will be undertaken using directional-drilling techniques to ensure that the existing western boundary wall to the lands will remain undisturbed during construction.

The wastewater collection system is designed and will be constructed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure to ensure self-cleansing velocities will be achieved on all pipe runs. The pipes proposed as part of this design have been sized in accordance with Table 2.1 below, an extract from IW-CDS-5030-03 (Revision 2 2020).

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework. The gravity wastewater sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 5 of this report. The foul sewer layout plans are attached on Drawing No's. 21207-JBB-PH1-XX-DR-C-04000 & 04001.

No. of Dwellings	Pipe Diameter	Minimum Gradient
2 to 9	150mm (or 225mm)	1:60
10 to 20		1:150
21 to 210		1:200
211 to 250	225mm	1:150
250 to 330		1:100
331 to 450		1:300
451 to 565	300mm	1:200
566 to 655	JUUIIII	1:150
656 to 830		1:100

Table 2-1: Foul Sewer Size/Gradient Criteria

#### Loading Calculations 2.4

The design flows are calculated using the Irish Water Code of Practice for Wastewater Infrastructure Appendix B which is summarised in tables 2.2 and 2.3 below.

Use	No. of Units	Occupancy Rate	Population (P)	Loading (G) (I/day/person)	Daily Loading (PxG) (I/day)	Daily Loading (I/s)
Residential	280	2.7/ Unit	756	150	113,400	
		11,340				
		124,740				
	Residentia	al Peaking Factor	(Pf _{Dom} ) (COP Apper	dix B – Table 2.5)	6	
		691,740	8.006			
Mi	sconnection		0.350			
			8.356			

Table 2-2: Foul Flow Calculations for Residential Development

Use

Creche

Café

Communal

Workspace

Lounge

Gym

Appendix 5 for the results.

Floor

Area

(m²)

320

89

166

180

191

Occupancy

Rate

4

1 per 20m²

1 per 5m²

14

31

1 per 5m²

Total

Commercial Peaking Factor (PfDom, Ind) (COP Appendix B - Table 2.7)

Misconnection Allowance (SW) 2% (COP Appendix B – Table 2.10)

Table 2-3: Foul Flow Calculations for Commercial Development The combined residential and commercial design flow is 8.8l/s. This figure has been proportionally applied as a base flow to the heads of the wastewater sewer runs within the MicroDrainage design model, see

Population

(P)

42

4

18

14

31

38

Infiltration (I) 10% (COP Appendix B - Table 2.4)

Design Foul Flow (Pf_{Dom, Ind} x PG) + I (I/s)

Bessborough SHD Development Services Infrastructure Report

Daily

Loading

(l/s)

Daily

Loading

(PxG)

(l/day)

2,100

200

216

1,400

465

1,900

6,281

3.141

314

3.455

4.5

14,449

0.168

0.233

0.401

Loading (G)

(I/day/person)

50

50

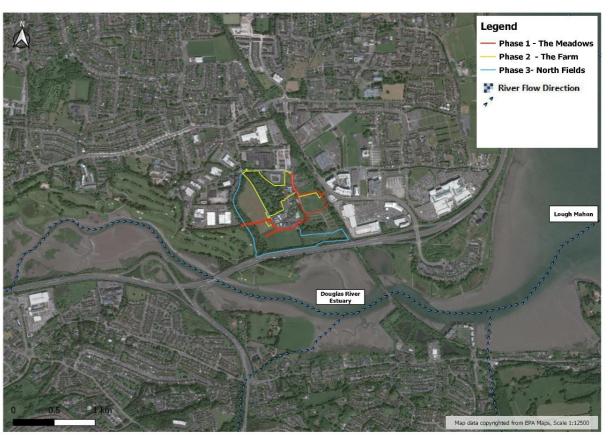
12

100

15

50

Total (Based on 12 Hour Day)


Dry Weather Flow (I/s) PG +I

Design Flow (I/s)

# SECTION 3: STORMWATER COLLECTION & DISPOSAL

#### Existing Hydrology 3.1

The proposed development site does not contain any mapped watercourse. The nearest watercourse to the proposed development site is the Douglas Estuary which is located approximately 260m to the south of the site. The Douglas Estuary flows in an easterly direction and discharges to transitional water body Lough Mahon to the south of the site. The main hydrological features associated with the site are presented in Figure 3.1 below.



#### Figure 3-1: Hydrological Features of the Area

A geological desk study was conducted to gain an initial understanding of the existing ground conditions. The below Figure 3.2 is an extract from the Geological Survey of Ireland (GSI), where the soil permeability at the site is categorised as 'Moderate'. Further to this the groundwater vulnerability is categorised as 'High', see Figure 3.3. Groundwater vulnerability of an area is determined by the permeability and thickness of the subsoils overlying the groundwater, and the type of recharge sources (diffuse or point source). Therefore, areas where the infiltrating water and contaminants move faster from land to groundwater with high permeability are more vulnerable. Both sources of information would suggest that the site should have reasonable rates of permeability.

A ground investigation was undertaken by Priority Geotechnical Ltd. in January 2022 to establish subsurface conditions at the proposed project site. An infiltration test was conducted in one of the boreholes (BH05), see Appendix 6. The results were inconclusive as there was no drop in water level after 60 minutes and it is thought this result is unlikely to be an accurate representation of the existing ground conditions considering the GIS data above. Infiltration testing in accordance with BRE 365 will be conducted in due course as part of later detailed design. For now, conservative assumptions have been made, to ensure a robust design, and there will be no reduction in runoff volumes applied for the various SuDS measures.

However, it has been assumed that the first flush, 5mm, of rainfall can be infiltrated to ground in specific areas designated for interception purposes, which is explained in greater detail below.

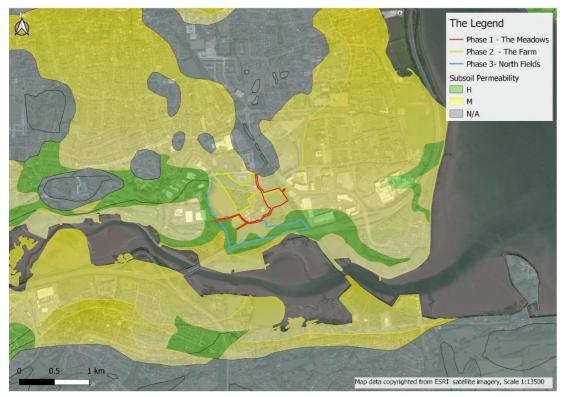



Figure 3-2: Soil Permeability



Figure 3-3: Groundwater Vulnerability

# 3.2 Existing Stormwater Network

Cork City Council drainage records indicate there is an existing 1350mmØ trunk storm sewer located approximately 400m to the west of the Phase 1 site, outside the boundary of the lands, which runs in a north-south direction before crossing under the South Ring Road (N40) and discharging to the Douglas Estuary, see Appendix 7.

A feasibility study of the local area has revealed that there is an existing 450mmØ storm sewer in the road adjacent to the western boundary of the Phase 1 site (increasing downstream to a 750mmØ), which runs north to south before turning in a westerly direction and connecting to the 1350mmØ storm sewer described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

Pending further investigation and confirmation of the capacity of the 450mmØ pipe the proposal is to connect to the larger 750mmØ further downstream.

## 3.3 Greenfield Runoff Rate

The total site area for Phase 1 is 1.53ha. The greenfield runoff rate has been estimated using the HR Wallingford Greenfield runoff estimation online tool (report attached in Appendix 8). The online tool calculated a Qbar figure of 12.61 l/s (equivalent to 8.24 l/sec/ha). A summary of the design values output by the HR Wallingford Greenfield runoff estimation online tool is shown below:

Design Criteria	Value
Site Area (ha)	1.53
Soil Type	4
SPR	0.47
SAAR (mm)	1106
1 year factor	0.85
30-year factor	1.65
100-year factor	1.95

### Table 3-1: HR Wallingford Design Value Outputs

Given the proximity of the site to the final outfall to the Douglas Estuary, the controlled outflow from the development has been set to the Q100 figure (the flow from the site in its greenfield condition in a 100-year storm event). This approach was proposed to Cork City Council Drainage Department and they were satisfied with the approach. See correspondence from Cork City Council in Appendix 9.

The growth factor to be applied when calculating Q100 from QBAR is 1.95 giving an upper limit to the discharge from the site at 24.6 l/sec. This is the value that will be used in later detailed design as the upper limit of surface water discharge from the development.

## 3.4 Proposed Development Surface Water Management System

The proposed surface water management system will, as far as is feasible, be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS).

The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimise the impact of urbanisation by replicating the runoff characteristics of a greenfield site. The criteria provide a consistent approach to addressing both rate and volume of runoff as well as ensuring the environment is protected from pollution that is washed off roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (In discussion with Cork City Council there is no requirement for long term storage)

#### 3.4.1 Layout of the Proposed Network

The proposed surface water network will include a storm drainage pipe network, attenuation storage structures and several SuDS features which will aid the reduction of runoff volumes by slowing surface water flows, providing the opportunity for evapotranspiration, and providing the opportunity for infiltration to ground. Both the interception and attenuation storage requirements of GDSDS will be sufficiently met.

An assessment of the potential SuDS measures that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753 as guidance. The following SuDS features have been identified as applicable and will be provided within the proposed scheme:

- Green Roofs: will be provided throughout the site, on flat roofs, where possible. The green roof will be an extensive type with sedum planting at the surface with a drainage layer beneath. The drainage layer will convey flows to discharge locations. It is not proposed to restrict the discharges from the roofs. Where possible discharges from roofs will be tied into planters or permeable paving substrata via diffusers.
- Permeable Paving: will be provided for all paved areas, excluding the access road, the car park ramp and the pedestrian link corridor. Permeable paving will be a Type B as per SuDS Manual, CIRIA 753, a combination of infiltration and piped drainage.
- Tree Pits/Bioretention Planters: will be provided in every feasible location where there is a proposed tree or planter. The tree pits will contain engineered soil-filled tree boxes with drainage pipes beneath to link trees together and tie in with the proposed surface water sewer. The bioretention planters will consist of a shallow landscaped depression at the surface with a drainage layer beneath.
- StormTech Attenuation Tank: will be provided at the natural low point, at the south of the site for final storage of runoff volumes before discharging to the existing surface water network at a controlled rate.
- Permavoid Geocellular Units: will be provided at the base of the raised podium build up, which will provide storage and conveyance of surface water volumes. The raised podium will consist of impermeable surfaces and permeable surface (i.e., tree pits/bioretention planters).

The SuDS features will be designed to work in sequence thereby creating a treatment train. The proposed SuDS layout is shown on see Drawing No. 21207-JBB-PH1-XX-DR-C-04003 and the overall drainage arrangement is shown on Drawing No. 21207-JBB-PH1-XX-DR-C-04001, both included with this submission.

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework The gravity surface water sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 10 of this report.

The contributing surface areas of the development have been split up and tabulated below:

Area Type	Units (ha)
Total Site Area	1.53
Roof Area (Blocks A, B, C & D) (Partially Green)	0.50 (0.34 Green)
Raised Carpark Podium (Partially Green)	0.23 (0.11 Green)
Permeable Paving	0.17
Tree Pits/Bioretention Planters	0.25
Impermeable Area	0.54
Open Space Without Formal Drainage	0.12
Total Drained Area	1.41

Table 3-2: Surface Areas

### 3.4.2 Interception Storage

In accordance with the requirements of GDSGS, at least 5mm, and preferably 10mm, of interception storage should be provided on site, where runoff to the receiving water can be prevented. Despite the infiltration test results we are confident that the existing ground will be able to disperse some runoff via infiltration. Further infiltration testing will be conducted in due course to confirm this assumption.

In the case of this development the total drained area is 1.41ha (14,100m²) as per Table 3.2 above. This results in a required interception storage volume of 70.50m³ (14,100 X 0.005) The proposed interception storage will be provided by green roofs, permeable paving, tree pits and bioretention areas.

Green roofs are proposed for each of residential blocks. These areas cover a total area of 3,400m². The build-up in the green roof system will provide a minimum of 5mm of interception storage per 1m², allowing for a total interception storage volume of 17.00m³.

Permeable surfaces including permeable paving, tree pits and bioretention planters are proposed throughout the development, for a total area of 4,200m². The drainage pipe within the gravel bed for these areas will be set at 50mm above the bed formation giving (assumed 30% voids) interception stage equivalent to 15mm storage depth. Total interception volume provided in the permeable paving equals 63.00m³.

The proposed StormTech attenuation tank has a surface area of 299m². Interception storage will be provided within the base of the tanks for a depth of 260mm depth of stone below the StormTech Chambers. Assuming the tanks have a void ratio of 43% (which is conservative), the total interception storage volume provided is 33.43m³

The overall interception storage volume provided is therefore 113.43m³ which represents approximately 8mm of interception storage which is above the required minimum provision as detailed above.

#### 3.4.3 Attenuation Storage

The proposed rate of surface water discharge from the development will be limited to that of the greenfield runoff for a 100-year storm event, as described in Section 4.2. Attenuation will be provided by StormTech attenuation chambers which will cater for the 100-year storm event with a 10% climate change allowance added. The proposed surface water network has been split into two catchments, A and B, see Figure 3.4.





Figure 3-4: Surface Water Catchment Areas

It is proposed to use a geocellular attenuation system such as Polypipe's Permavoid Modular Cell 85 system (or similar approved), in the base of the podium for Catchment A. The Permavoid system provides at least 92% voids, which allow for conveyance and storage across the system. Based on a surface area of 2152m², Permavoid Modular Cell 85 system can provide 168m³ storage volume, in the geocellular units alone. Storage will also be available in the drainage stone above the geocellular units. There will be flow control devices installed at the invert level of the drainage system on the podium.

StormTech attenuation chambers are proposed for Catchment B. The restricted flows from the podium (Catchment A) will tie in upstream of the StormTech attenuation chambers.

The various SuDS components being proposed as part of the development will provide some attenuation, reduce flow rates and will disperse surface water via evapotranspiration and infiltration. However, at this stage of the design process, and to ensure a robust design, we are designing for the worst case and have not assumed a reduction in runoff volume from the various SuDS features and permeable surfaces in the required attenuation storage calculations. This will be revisited closer to construction stage, subject to a granted planning permission, to reduce the required attenuation storage volume if possible.

Preliminary attenuation volume calculations, based on the above criteria, are summarised in Table 3.3. (See Appendix 11 for detailed calculations)

Ref.	Catchment Area (ha)	Q100 (l/s)	Max. Discharge Rate (I/s)	Required Storage Volume 100yr +10% C.C. (m ³ )	Provided Attenuation Volume (m ³ )	Attenuation Storage Type
A	0.48	7.72	7.72	162	168	Permavoid Modular Cell 85
В	1.05	16.88	24.60	355	360	StormTech Chambers

#### 3.4.4 Water Quality

The proposed development is residential and therefore is considered a low-level pollution hazard. Surface water runoff will be directed to the SuDS features as mentioned above and will therefore benefit from their pollutant removal qualities. However, to ensure water quality standards are met, we are proposing a hydrocarbon interceptor upstream of the StormTech attenuation tank (Catchment B). This catchment includes the drainage of the access road which has the potential to contaminate surface water runoff via oil spills etc. from vehicles.

#### Simple Index Approach

The effectiveness of the chosen SuDS components to achieve water quality can be assessed using the 'simple index approach' as described in CIRIA C753.

The simple index approach designates risk indices to the various areas of development to determine their possible pollutant contribution. Similarly, the SuDS features are designated mitigation indices and if the mitigation indices are larger than the risk indices the water quality objectives are considered satisfied.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Driveways, car parks, low traffic roads	Low	0.5	0.4	0.4

### Table 3-4: Pollution Hazard Indices for Different Land Uses (Source: CIRIA C753)

As can be seen in Table 3.5 below the total mitigation potential of the SuDS features far outweigh the contamination risks. Secondary (or further) stages in the treatment train are assigned 50% of the stated treatment indices value.

SuDS Component	TSS	Metals	Hydrocarbons
Permeable paving	0.7	0.6	0.6
Bioretention/Tree pits	0.8	0.8	0.8
Petrol Interceptor	0.4	0.4	0.4

Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters (Source: CIRIA C753)

### 3.4.5 Amenity and Biodiversity

Meeting amenity and biodiversity standards is all about creating attractive, pleasant, and liveable urban areas for both people and for nature.



#### Table 3-3: Summary of Attenuation Requirements and Proposals

The proposed SuDS features within this development will not only be aesthetically pleasing, but they will also assist the creation of liveable habitats for nature by retaining rainfall at the source. The final details of these features will be drawn-up in consultation with the landscape design and ecological consultants on the design team.

## 3.5 Conveyance of Surface Water Outflow to Final Discharge Location

A new 225mmØ surface water outfall pipe will convey the restricted flows from the site in a westerly direction across the overall Bessborough site connecting to the existing 750mmØ surface water sewer upstream of its connection to the existing 1350mmØ surface water pipe which in turn discharges to the Douglas Estuary further to the south.

A legal wayleave is in place across the Bessborough lands immediately to the west of the Phase 1 development to facilitate this connection.

The controlled discharge from the proposed development (a maximum of 24.8 l/sec) will be minimal in the context of the capacity of the existing 750mm and 1350mm pipes and given that this controlled outflow matches existing greenfield runoff from the site in a 100-year storm event these flows will not create a significant increase in the flow to the estuary.

The proposed route of this sewer is shown on Drawing No. 21207-JBB-PH1-XX-DR-C-04007.

# SECTION 4: WATER SUPPLY

### 4.1 Existing Watermain Network

Cork City Council watermain records show there is an existing 150mmØ watermain in the roadway adjacent to the western boundary of the Phase 1 site. There is also an existing 1200mmØ trunk watermain running through the greenfield area in the ownership of the Applicant to the south of development site, see Appendix 12.

## 4.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) have issued a Confirmation of Feasibility (COF) that the site can be serviced by its water infrastructure network. This COF is included in Appendix 4.

IW have advised that the connection is to be made to the existing 150mmØ ductile iron watermain in the roadway adjacent to the western boundary of the Phase 1 site.

### 4.3 Design Acceptance Stage

The proposed designs for water supply infrastructure within the development were progressed in accordance with Irish Water's Code of Practice for Water Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

To serve the development a 40mmØ watermain will be connected to the existing 150mmØ ductile iron watermain in the roadway adjacent to the western boundary of the site. This new connection will feed a cold-water storage tank that will supply boosted potable water to each apartment and commercial unit and supply a sprinkler system. A bulk water meter will be provided at the connection to the site. The supply arrangements will be carried out to the requirements of Irish Water.

A second and separate connection will be made to the existing 150mmØ ductile iron watermain for the purposes of fire-fighting water supply. A fire-main and fire hydrants will be provided such that each building will be within 46m of a hydrant and these hydrants will be fully accessible to the fire service. Apartment buildings will be subject to Fire Safety Certificate applications and the provision of appropriate water supply for firefighting will be addressed in these applications.

Preliminary water supply layout plans are shown on Drawing No. 21207-JBB-PH1-XX-DR-C-03001.

The water supply system is designed and will be constructed in accordance with Irish Water's Code of Practice for Water Infrastructure

## 4.4 Loading Calculations

Water demand for the development is determined in accordance with Irish Water Code of Practice for Water Infrastructure.

Per-capita consumption = 150 litres/person/day

Average day / peak week demand (ADPWD) = 1.25 x ADDD

Peak Water Demand = 5.00 x ADPWD

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)
Residential	280	2.7	756	113,400	1.31	1.64	8.2
			or Domand for			Total	8.2

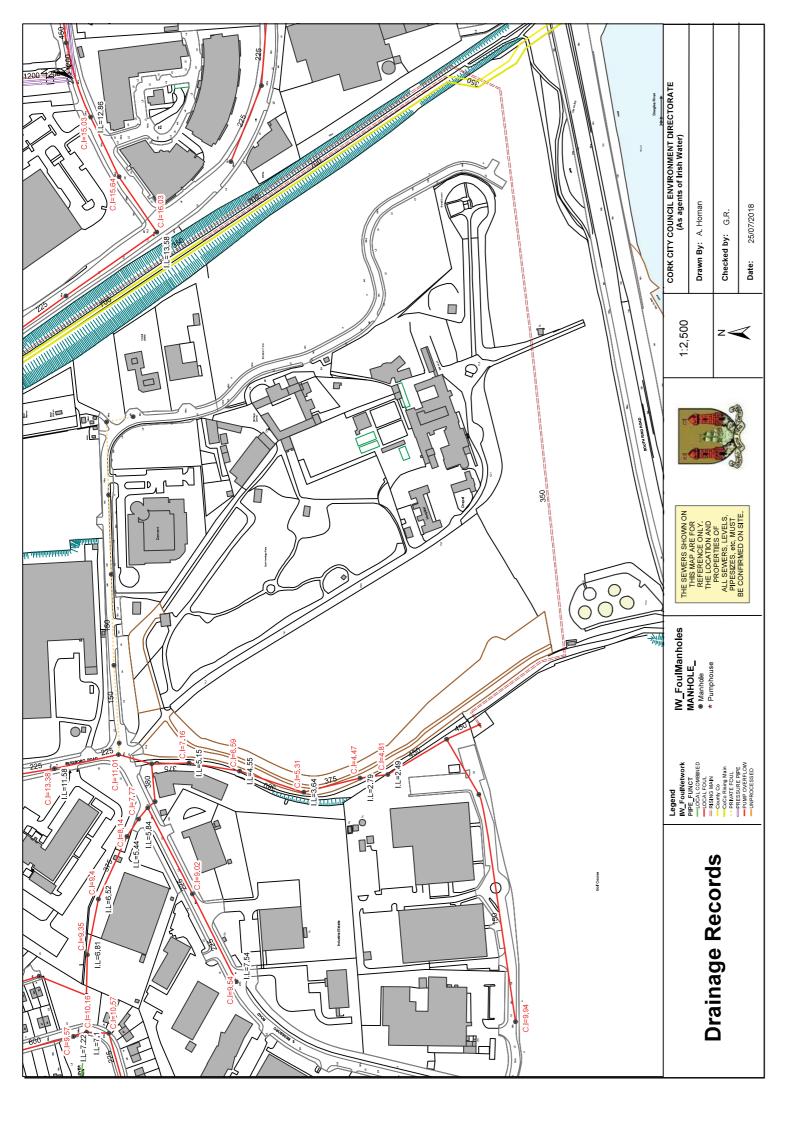
 Table 4-1: Water Demand for Residential Development

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)	
Creche	320	42	42	6,300	0.073	0.091	0.455	
		1 per 20m ²	4	600	0.038	0.038		
Café	89	1 per 5m ²	18	2,700		0.048		
Communal Workspace	166	14	14	2,100	0.024	0.030	0.150	
Lounge	180	31	31	4,650	0.054	0.068	0.340	
Gym	191	1 per 5m ²	38	5,700	0.066	0.083	0.415	
Total								
Total (Based on 12 Hour Day)								

Table 4-2: Water Demand for Commercial development



PROPOSED SITE LAYOUT PLAN






	4		
			$\sim$
	$ \setminus \setminus $ '		
Car Park	/ / / /		
	$\rightarrow$		
			$\sim$
		$\backslash$	
	$\land$		$\frown$
A A A A A A A A A A A A A A A A A A A			
		、 、	
		$\backslash$	
		````	$\setminus \parallel$
	THE MEADOWS BUILI	JINGS: A,	B,C,D
\sim	280 APARTMENTS	NO.	%
	STUDIO AP. 1 BEDROOM AP.	6 112	2.1 % 40.0 %
	2 BEDROOM AP. 4P	150	53.6%
	3 BEDROOM AP. TOTAL NO.	12 280	4.3 % 100 %
	DUAL ASPECT	121	43.2%
	NO. OF UNITS WITH	162	57.8%
	AREA 10% GREATER THAN REQUIRED		
	TOTAL RESIDENT'S PRIVATE AMENITY AREA	2,172 sqm	
	PUBLIC OPEN SPACE	3,958 sqm	63,5 %
	PARKING SPACES	98	35.0%
	CRECHE DROP OFF MOTORBIKE SPACES	4 10	
	RESIDENT'S BIKE SPACES	464	
	VISITOR'S BIKE SPACES	140	
	LEGEND		
	POND		
	VEGETATION	45	
	PATHS		
	GREEN ROO	F	
	EXISTING TR		
	ZONE		
	• TREE TO BE F	LEIVIOVED	
	site boundary a	REA: 2.3 ha	a
	Site Centre Point Coordina	ites:	
	X,Y = 571940.0,570405.0		
	OTHER	LANDS UNDER ANT'S OWNERSHIP	,
	out nonw	ר ברד א בר	
TE PLAN	SHipsey	place	makers
THE MEADOWS- BESSBOROUGH DRAWING DESCRIPTION: STE PLAN 1:500 @ A1 DATE : 03.2021 OVERSEEN BY : MD	APPROVED BY : GB DRAWING NO.	ESTUARY VIEW ENT. : SB-2020-107-200	LTD
rd H 🖡 Baladas, Carl, Feland — 11 - 133 (p.D. 2008) 55 - f 133 (p.D. 2008) 27 - a integraty paytieny com — www.shpenytumy.com 🔘 COVH12-0	of \$49557 BABRY Ltd. This drawing or design may not be reproduced without	express unitien permission of SHi	PSEYBARRY Ltd

CORK CITY COUNCIL - EXISTING WASTEWATER NETWORK

AS-BUILT LOCAL DRAINAGE NETWORK

a. a.	
	NOTES.
	To be read in conjunction with all relevant drawings and specification. Do roll scale if in doubt mix. All dimensions to be checked on pile.
	An unersons to be checked on pace.
Legend	
Foul & Sto	orm Site Connections
	and connections
O-Existing Se	ervices Connected
1	
	υ.
	10 m
	ب می ب
· · · · · · · · · · · · · · · · · · ·	
	and the second
States of the second	
Anna Anna A	5-1-1 Brill
- Cli	With call
m	
- Janu	
10	
10 8.354 6.850	H.
1 088.3	.
1510 - 6273 - 6160	*
	·
	CITY CO.
	CC CILINCE COLORE
	Same The Contact (Same the D) way
	557 308 34 38
	0. ISSUED FOR CONSTRUCTION N.M. 0.0°D. 11.04.°06
	1. No desimilation 1. No desimilatio
	A. (abb) (abb) A. (abb
	1. No desimilation 1. No desimilatio
	1. To Construct the Construction 1. To Construct the Construct the Construction 1. To Construct the Construct th
	1. No controlocito 1. No controlocit

IRISH WATER – CONFIRMATION OF FEASIBILITY

IRISH WATER – STATEMENT OF DESIGN ACCEPTANCE

Tim Finn

JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island Co. Cork T45KH74

9 February 2022

WATE

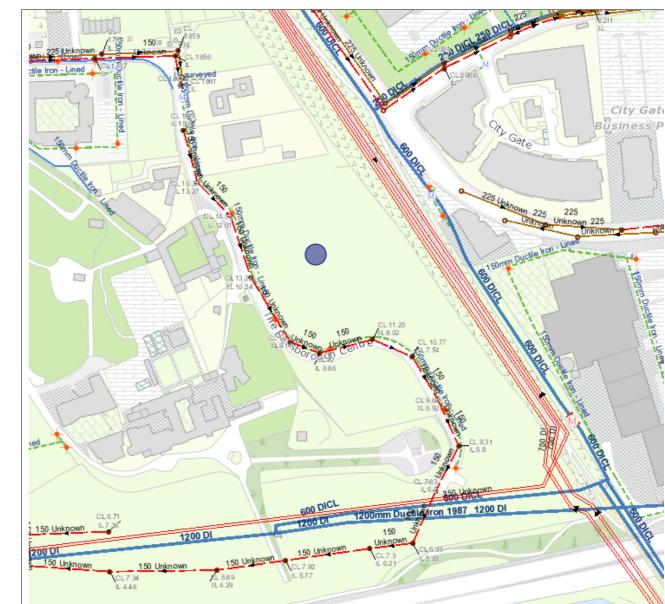
Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcai

Irish Water PO Box 448. South City **Delivery Office** Cork City.

agreement.

www.water.ie

Re: CDS21001326 pre-connection enquiry - Subject to contract | Contract denied


Connection for Multi/Mixed Use Development of 280 unit(s) and creche at Bessboro, Blackrock, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Bessboro, Blackrock, Co. Cork (the Premises). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>					
Water Connection	Feasible without infrastructure upgrade by Irish Water					
Wastewater Connection	Feasible Subject to upgrades					
SITE SPECIFIC COMMENTS						
Water Connection	Connection to be made to the existing 150mm DI adjacent to site. No works to interfere with existing 1200mm trunkmain. No diversions of this main shall be permitted.					
Wastewater Connection	Bessborough WWPS is almost at design loading capacity. Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development. This upgrade project is scheduled to be completed by Q4 2022 (this may be subject to change) and the proposed connection could be completed as soon as possibly practicable after this date.					
Strategic Housing Development	Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a					

Stlurthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

wastewater services.

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the

Statement of Design Acceptance in relation to the layout of water and

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Gronne Massis

Yvonne Harris Head of Customer Operations

Diarmuid O' Brien JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island, Co. Cork T45KH74

28 February 2022

Re: Design Submission for Bessboro, Blackrock, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS21001326

Dear Diarmuid O'Brien,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Kyle Jackson Email: kyle.jackson@water.ie

Yours sincerely,

Monne Massis

Yvonne Harris Head of Customer Operations

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

FOUL SEWER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:44	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Diginarie
Innovyze	Network 2020.1	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%) 0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m) 0.200
Flow Per Person (l/per/day)	150.00	Maximum Backdrop Height (m) 4.000
Persons per House	2.70	Min Design Depth for Optimisation (m) 1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s) 0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	lse (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.000	14.279	0.238	60.0	0.000	0	2.6	1.500	0	225	Pipe/Conduit	3
F1.001	20.109	0.134	150.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď
F1.002	69.671	0.465	149.8	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď
F2.000	26.947	0.449	60.0	0.000	0	1.2	1.500	0	225	Pipe/Conduit	0
F2.001	26.434	1.088	24.3	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ð
F1.003	27.027	0.180	150.2	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď
F1.004	31.230	0.208	150.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď
F1.005	29.246	0.195	150.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	్
F3.000	10.497	0.175	60.0	0.000	0	0.9	1.500	0	225	Pipe/Conduit	ð
F3.001	23.302	0.155	150.3	0.000	0	0.0	1.500	0	225	Pipe/Conduit	6
F3.002	49.153	1.090	45.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ð
F1.006	27.571	0.184	149.8	0.000	0	0.0	1.500	0	225	Pipe/Conduit	6
F1.007	23.108	0.963	24.0	0.000	0	1.2	1.500	0	225	Pipe/Conduit	6
F1.008	7.094	0.263	27.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
F1.000	11.970	0.000	2.6	0	0.0	32	0.74	1.48	59.0	2.6	
F1.001	11.732	0.000	2.6	0	0.0	40	0.54	0.94	37.2	2.6	
F1.002	11.598	0.000	2.6	0	0.0	40	0.54	0.94	37.2	2.6	
F2.000	12 670	0.000	1.2	0	0.0	22	0.58	1.48	59.0	1.2	
	12.070	0.000	1.2	0	0.0	18	0.38	2.33	92.8	1.2	
F2.001	12.221	0.000	1.2	0	0.0	10	0.80	2.33	92.0	1.2	
F1.003	11.133	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8	
F1.004	10.953	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8	
F1.005	10.745	0.000	3.8	0	0.0	49	0.60	0.94	37.2	3.8	
F3.000	11 970	0.000	0.9	0	0.0	20	0.53	1.48	59.0	0.9	
F3.001		0.000	0.9	0	0.0	24	0.39	0.94	37.2	0.9	
F3.002		0.000	0.9	0	0.0	18	0.59	1.71	68.1	0.9	
F3.002	11.040	0.000	0.9	0	0.0	10	0.59	1./1	00.1	0.9	
F1.006	10.550	0.000	4.7	0	0.0	54	0.64	0.94	37.2	4.7	
F1.007	10.366	0.000	5.9	0	0.0	38	1.31	2.35	93.4	5.9	
F1.008	9.403	0.000	5.9	0	0.0	40	1.25	2.22	88.1	5.9	
			@1.0.0	0 000	0						
			©198	2-202	0 Innovy	ze					

J.B. Barry & Partners Ltd	
Classon House	20217 - B
Dundrum Business Park	(The Mead
Dublin 14	Foul Sewe
Date 18/02/2022 17:44	Designed
File 21207-JBB-PH1-XX-M3-	Checked b
Innovyze	Network 2

Network Design Table

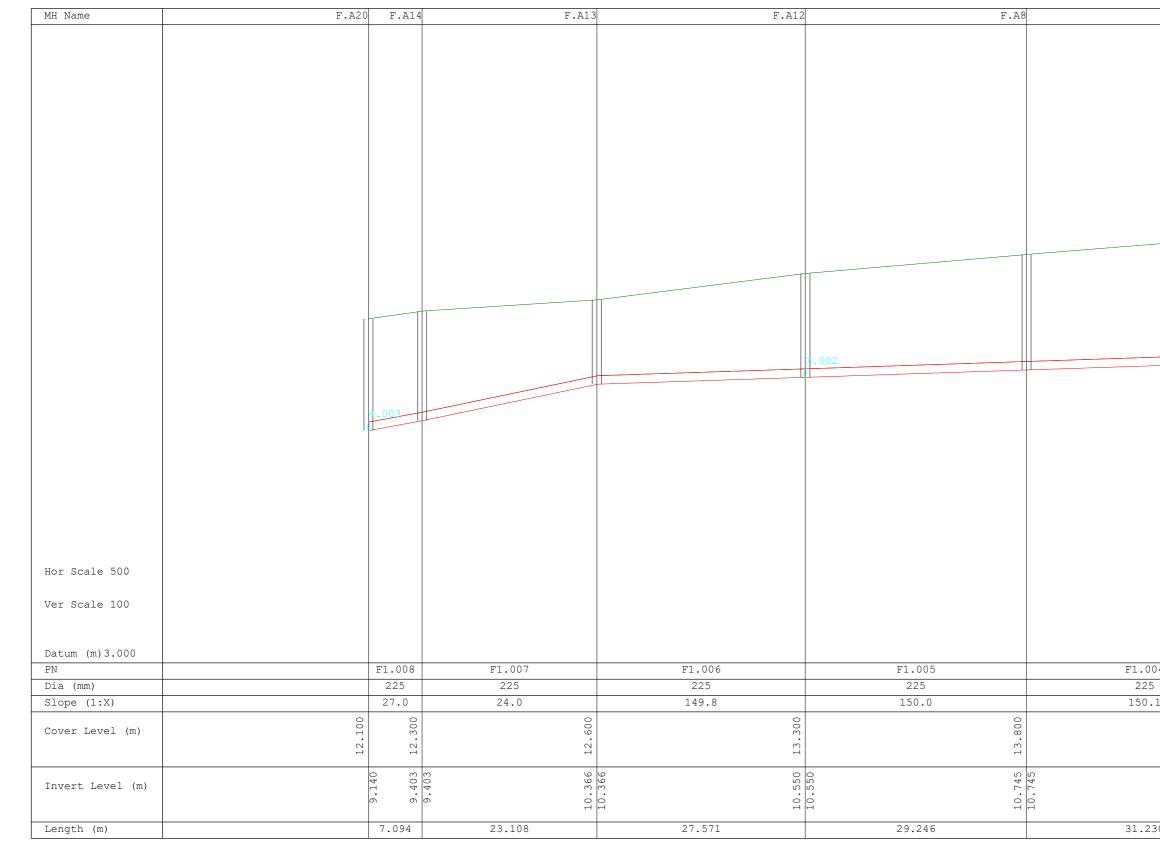
PN	Length	Fall	Slope	Area	Houses	Ba	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)		Desig
F1 000	18.382	0 306	60 1	0.000	0		1 0	1.500	0	225	Pipe/Conduit	4
	30.621				0			1.500	0		Pipe/Conduit	ð
F4.001	30.021	0.204	130.1	0.000	0		1.0	1.300	0	225	Pipe/conduit	ď
F5.000	10.220	0.465	22.0	0.000	0		0.9	1.500	0	225	Pipe/Conduit	ð
F4.002	10.047	0.067	150.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
F4.003	52.923	0.353	149.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ĕ
												-
F1.009	57.818	0.578	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	6
F1.010	37.535	0.375	100.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	- Ū
F1.011	36.298	0.363	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
F1.012	64.690	0.647	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
F1.013	27.697	0.277	100.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	- Ū
F1.014	24.176	0.242	99.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ē
F1.015	27.035	0.270	100.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	- Ū
F1.016	33.938	0.339	100.1	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
F1.017	45.563	1.478	30.8	0.000	0		8.8	1.500	0	225	Pipe/Conduit	Ť
F1.018	45.563	0.456	99.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	- Ū
F1.019	78.650	2.044	38.5	0.000	0		6.1	1.500	0	225	Pipe/Conduit	Ť
F1.020	10.451	0.475	22.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	
												-

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F4 000	10.070	0.000	1.0	0	0.0	21	0.55	1.48	58.9	1.0
F4.001	9.764	0.000	2.0	0	0.0	36	0.49	0.94	37.2	2.0
F5.000	10.070	0.000	0.9	0	0.0	16	0.75	2.45	97.6	0.9
F4.002	9.560	0.000	2.9	0	0.0	43	0.55	0.94	37.2	2.9
F4.003	9.493	0.000	2.9	0	0.0	43	0.55	0.94	37.2	2.9
F1.009	9.140	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.010	8.562	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.011	8.187	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.012	7.824	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.013	7.177	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.014	6.900	0.000	8.8	0	0.0	67	0.89	1.15	45.7	8.8
F1.015	6.658	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.016	6.388	0.000	8.8	0	0.0	67	0.89	1.15	45.6	8.8
F1.017	6.049	0.000	17.6	0	0.0	71	1.65	2.07	82.4	17.6
F1.018	4.571	0.000	17.6	0	0.0	97	1.07	1.15	45.7	17.6
F1.019	4.115	0.000	23.7	0	0.0	88	1.65	1.85	73.7	23.7
F1.020	2.071	0.000	23.7	0	0.0	76	2.02	2.45	97.5	23.7

Free Flowing Outfall Details for Foul - Main

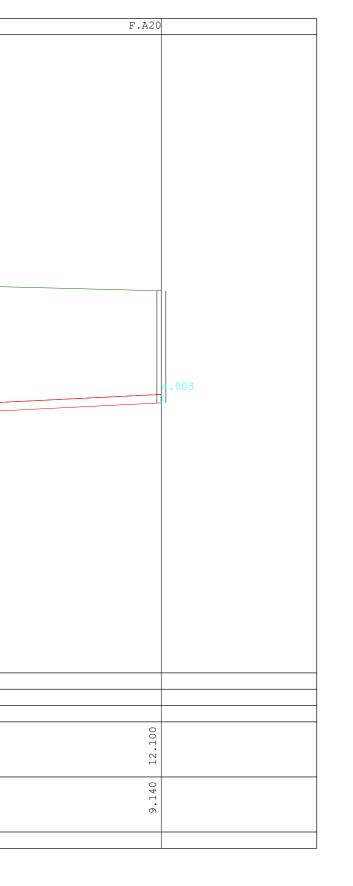
Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	Ι.	Level (m)	(mm)	(mm)
F1.020	F.A32		3.800		1.596		0.000	0	0


©1982-2020 Innovyze

	Page 2
Bessborough SHD	
adows)	
ver	Micro
d by DOB	
by	Drainage
2020.1	
e for Foul - Main	
	Auto esign

J.B. Barry & Partners Ltd	Page 1	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialitaye
Innovyze	Network 2020.1	

H Name	F.A7	F.A6		F.A3	F.A2	F.A1
		3,001				
or Scale 500						
er Scale 100						
atum (m)4.000						
N	F1.0		F1.002		F1.001 F1.000	
ia (mm)	225		225		225 225	
lope (1:X)	150.		149.8		150.1 60.0	
over Level (m)	300	14.280		080	060	13.400
	14.	77.		- 7	14.	та. 1 ж.
where the transformed and	9 2	11.133 11.133		11.598 11.598	11.732 11.732	11.970
NVERT LEVEL (M) I						
nvert Level (m)						
ength (m)	27.0		69.671		20.109 14.279	


J.B. Barry & Partners Ltd	Page 2	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

F.A7	
	1
1	
-	
14.300	
14.	
10.953	
10.	
0	

J.B. Barry & Partners Ltd					
Classon House	20217 - Bessborough SHD				
Dundrum Business Park	(The Meadows)				
Dublin 14	Foul Sewer	Micro			
Date 18/02/2022 17:45	Designed by DOB	Drainage			
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage			
Innovyze	Network 2020.1				

MH Name	F.A23	F.A22	F.A21	
Hor Scale 500				
Ver Scale 100				
Datum (m)2.000		21 011	T1 010	51.000
PN	1	225	F1.010 225	F1.009 225
Dia (mm)		100.0	100.1	100.0
Slope (1:X)				100.0
Cover Level (m)	00000	006	400	
	11.600	11.900	12.400	
	54	8 3 3 4	00	
Invert Level (m)	. 824	8.187	8.562 8.562	
Length (m)		36.298	37.535	57.818

J.B. Barry & Partners Ltd					
Classon House	20217 - Bessborough SHD				
Dundrum Business Park	(The Meadows)				
Dublin 14	Foul Sewer	Micro			
Date 18/02/2022 17:45	Designed by DOB	Drainage			
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye			
Innovyze	Network 2020.1				

F.A27	F.A26	F.A25	F.A24	
				1
I.				
	F1.015	F1.014	F1.013	F1.012
	225	225	225	225
	100.1	99.9	100.0	100.0
0	0	0	0	
. 00	. 50	. 80	.10	
11	1	1	1	
	22 88 23 88	900	900	
				• [-
	27.035	24.176	27.697	64.690
	11.000	F1.015 225 100.1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	F1.015 F1.015 F1.014 225 225 100.1 99.9	P1.015 P1.014 P1.013 225 225 225 100.1 99.9 100.0

ت	A23
F .	
	<u></u>
10	
12	
5.0	
	0
	11.600
	4
	7.824
90	
	1

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialitacje
Innovyze	Network 2020.1	

			1
MH Name	F.A28	F.A27	7
Hor Scale 500			
Ver Scale 100			
Datum (m)0.000			
PN		F1.016	
Dia (mm)		225	
Slope (1:X)		100.1	
	0	00	
Cover Level (m)	10.900	11.000	
	1 0		
		<u>თ</u> . დ	
Invert Level (m)		6 0 4 9 3 8 8 0 4 9 8 8 8	
		َنَّ ف	
Length (m)		33.938	
10119 CII (III)		33.330	

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	F.A6	F.AS	F.A4	1
	1	1		
				-
		1.002		
		1		
Nor Scale 500				
Ver Scale 100				
Datum (m)4.000				
PN		F2.001	F2.000	
Dia (mm)		225	225	
Slope (1:X)		24.3	60.0	
	<u>0</u>			
Cover Level (m)	14. 280	14.200	14.100	
	4" 	L 4	L	
Invert Level (m)		.13	12.221	
		1 2 2	1 12	
Length (m)		26.434	26.947	
(m)		20.101	20.917	L

J.B. Barry & Partners Ltd	
20217 - Bessborough SHD	
(The Meadows)	
Foul Sewer	Micro
Designed by DOB	Drainage
Checked by	Diamacje
Network 2020.1	
	(The Meadows) Foul Sewer Designed by DOB Checked by

MH Name	F.A12	F.A11	F.A10	F.A
				1
		0.05		
Hor Scale 500				
IOI SCALE JUU				
Ver Scale 100				
101 D0010 100				
Datum (m)4.000				
PN		F3.002	F3.001	F3.000
Dia (mm)		225	225	225
Slope (1:X)		45.1	150.3	60.0
	13.300	00	00	(
Cover Level (m)		13.400	13.400	(((
		н Т	÷,	
		0 0	2 2	Ω Ω
Invert Level (m)				
Invert Level (m)		10.550	11.64	11.795

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	
Innovyze	Network 2020.1	

I Name	F.A20		F.A19 F.A18	F.A16	F.A15	
			5.000			
	1 008					
or Scale 500						
- Casla 100						
r Scale 100						
tum (m)2.000						
		F4.003	F4.002	F4.001	F4.000	
a (mm)		225	225	225	225	
ope (1:X)		149.9	150.0	150.1	60.1	
	00		200	500	200	
ver Level (m)	12.100		• •	•	•	
	1 2					
vert Level (m)	40		9.493 9.493 9.560 9.560	9.764	9.764	
WOLD DEVEL (III)	ال ال		2.66 2.67 1.67 1.67 1.67	L. 6		
	0,			01		
ngth (m)		52.923	10.047	30.621	18.382	

J.B. Barry & Partners Ltd		Page 9
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Foul Sewer	Micro
Date 18/02/2022 17:45	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	F.A18	F.A17	
		4.001	
Hor Scale 500			
Ver Scale 100			
Datum (m)2.000			
PN		F5.000	
Dia (mm)		225	
Slope (1:X)		22.0	
	0		
Cover Level (m)	11.500	11.500	
	, ,		
Invert Level (m)		9.605	
		6 0	
Length (m)		10.220	

PRIORITY GEOTECHNICAL LTD - GROUND INVESTIAGTION

Our Ref: JMS/Rp/P21239 + attachments (*.pdf)

16th March, 2022

JB Barry & Partners Limited

3 Eastgate Road,

Eastgate Business Park,

Little Island,

Co. Cork,

T45 KH74.

Re: Bessborough SHD Sites, Site Investigation, Factual report.

Introduction

In November 2021, Priority Geotechnical (PGL) were requested by JB Barry & Partners Limited acting on behalf of their client Estuary View Enterprises to undertake a site investigation as part of the Bessborough SHD Sites project.

Objectives

The objective of the site investigation contract is to determine the ground and groundwater conditions in order to inform the engineering design solutions for the proposed development.

Scope

The original scope of the site investigation, which was specified by JB Barry & Partners, comprised of:

- 06Nr. Cable percussion boreholes;
- Trial pits;
- Surveying of 'as-built' levels and co-ordinates;
- All associated sampling; •
- All associated laboratory works; •
- Associated reporting;

The final site works as completed is outlined, herein. This geotechnical data report presents the fieldworks records with regard to the site investigation for the Bessborough SHD Sites Project. The report should be read in conjunction with the exploratory records, the photographic records and the laboratory test data accompanying this report.

Site Works

This investigation was carried out in accordance with Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards (BS 5930 (2015) Code of Practice for Site Investigation and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, in situ Tests Parts 1 to 9).

The direct intrusive fieldworks were undertaken from the 10th and 17th January, 2022 to under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, accompanying this report.

Cable Percussion Boreholes

Six (06) cable percussion boreholes were drilled to depths 4.4m below existing ground level (bgl) to 9.1m bgl using PGL's Dando 2000 Rig and 200mm diameter casing. The logs are accompanying this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
BH01	4.4	13/01/2022
BH02	9.1	10/01/2022
BH03	8.4	12/01/2022
BH04	7.3	14/01/2022
BH05	7.4	17/01/2022
BH06	7.0	13/01/2022

Chiselling						
Location	Depth Top (m bgl)	Depth Base (m bgl)	Duration (hh:mm)	Tool		
BH01	1.20	1.30	01:00	Chisel.		
	4.30	4.40	01:00	Chisel.		
BH02	2.75	2.90	01:00	Chisel.		
DEUZ	8.90	9.10	01:00	Chisel.		
DU02	4.90	5.00	01:00	Chisel.		
BH03	8.30	8.40	01:00	Chisel.		
BH04	3.80	4.00	01:00	Chisel.		
БП 04	7.20	7.30	01:00	Chisel.		
DUOS	6.70	6.90	01:00	Chisel.		
BH05	7.30	7.40	01:00	Chisel.		
PLIOC	5.75	5.95	01:00	Chisel.		
BH06	6.90	7.00	01:00	Chisel.		

Trial Pits

Seven (07) trial pits were excavated to depths 0.3m bgl to 4.6m bgl using a 14t tracked excavator. The exploratory logs and photographic records accompany this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
TP01	3.9	11/01/2022
TP02	3.2	10/01/2022
TP03	4.5	11/01/2022
TP04	4.5	13/01/2022
TP05	4.5	14/01/2022
TP06	0.3	12/01/2022
TP06A	4.6	12/01/2022

Sampling

A total of sixty two (62) bulk disturbed samples (B) and twenty two (22) small disturbed samples (D) were recovered from the exploratory holes in accordance with Geotechnical Investigation and Sampling – Sampling Methods and Groundwater Measurements (EN ISO 22475-1:2006).

In-Situ Testing

Standard Penetration Tests (SPT)

A total of thirty nine (39) standard penetration tests, were carried out in the cable percussion boreholes using the 60° solid cone (CPT) in place of the standard split barrel sampler. The data was presented on the relevant logs accompanying this factual report.

Falling Head Tests

Two (02) in situ falling head permeability tests were carried out in boreholes; in accordance with BS5930: 1999, Section 4: Cl. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data was presented on the relevant borehole log presented accompanying this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_2}{\log_2}$$

Generally for all tests the specific depth range of the test was the deposits below the depth of casing. A mean k measured ($k_{H} = k_{V}$), permeability in the soil was assumed equal in both horizontal and vertical direction, $(k_H/k_V = 1)$. The test geometry provided a shape factor, f for the test undertaken in the standpipe well.

Dynamic Probing

PGL's Competitor dynamic probing rig was used to undertake dynamic probing (DP(H); 50kg drop weight, 500mm drop height) in general accordance with Geotechnical Investigation and Testing, Part 2, Dynamic probing, BS EN ISO 22476-2:2005. The blows per 100mm (N_{100 H}) were recorded to refusal being 25blows without progress over 100mm. Six (06) number dynamic probes progressed to refusal at depths 2.7m bgl to 8.8m bgl. The exploratory logs accompany this factual report.

$$\frac{(H_0/H_1)}{t}$$

Location	Refusal depth, m bgl
DP01	3.7
DP02	8.8
DP03	2.7
DP04	5.0
DP05	3.0
DP06	3.5

Survey and Drawings

The 'as built' exploration locations were surveyed to the Ordinance Survey Irish Transverse Mercator system of co-ordinates (ITM) and elevations to Malin Head datum and shown on the relevant exploratory logs and the Exploratory Location Plans (P21239-SI-A, P21239-SI-01) accompanying this report.

Location	Easting	Northing	Ground Level (mOD)	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
BH01	171820.78	70468.88	16.64	4.40	13/01/2022
BH02	171741.94	70395.18	13.07	9.10	10/01/2022
BH03	171738.42	70311.70	11.49	8.40	12/01/2022
BH04	172026.44	70364.45	12.50	7.30	14/01/2022
BH05	172034.00	70300.87	12.21	7.40	17/01/2022
BH06	171946.00	70338.05	13.57	7.00	13/01/2022
DP01	171821.58	70465.48	16.54	3.70	13/01/2022
DP02	171742.31	70392.88	12.93	8.80	13/01/2022
DP03	171735.89	70311.95	11.53	2.70	13/01/2022
DP04	172027.93	70363.86	12.40	5.00	13/01/2022
DP05	172033.97	70304.80	12.21	3.00	14/01/2022
DP06	171944.50	70343.17	13.61	3.50	13/01/2022
TP01	171822.48	70466.73	16.60	3.90	11/01/2022
TP02	171742.96	70394.13	13.04	3.20	10/01/2022
TP03	171736.67	70314.17	11.80	4.50	11/01/2022
TP04	172026.89	70362.36	12.35	4.50	13/01/2022
TP05	172033.99	70303.02	12.21	4.50	14/01/2022
TP06	171940.73	70337.93	13.69	0.30	12/01/2022
TP06A	171944.88	70339.22	13.61	4.60	12/01/2022

Laboratory Testing

Laboratory testing was ongoing at the time of reporting.

Published Geology

A search of the Geological Survey data base and 1:100,000 mapping (Sheet 25) identified two (02) major lithological units defining the area. The majority of the site is underlain by Waulsortian Limestones (WA) described as massive unbedded Lime-Mudstones. The Little Island Formation (LI) is mapped to the north and defined by massive and crinoidal fine Limestone.

Teagasc subsoil mapping indicates that the area is underlain by Made Ground deposits. The National Groundwater Vulnerability mapping indicates the area mostly has a rating of high vulnerability.

Ground and Groundwater Conditions

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (2015) and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002),– Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, *in situ* testing and details of the samples taken, together with any observations made during the ground investigation.

Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc. Low volume groundwater flow may be cut-off by borehole casing as it progresses in stiff glacial deposits. The duration trial pit excavations remain open may not be sufficient to allow for low volume flow to present. The groundwater regime should be assessed from standpipe well installations.

Groundwater was encountered at depths 3.10m bgl to 3.90m bgl during the period of fieldworks within the extent of the borehole and pit excavations, summarised below. The exploratory locations were backfilled with grout, gravel and arisings.

SUMMARY OF GROUNDWATER

Location	Depth Strike (m bgl)	Remarks	Standpipe (Y/N)
BH01	-	None encountered.	N
BH02	-	None encountered.	Y
BH03	-	None encountered.	N
BH04	-	None encountered.	N
BH05	-	None encountered.	N
BH06	-	None encountered.	Y
TP01	-	None encountered.	N
TP02	-	None encountered.	N
TP03	-	None encountered.	N
TP04	3.9	Trickle rate of flow	N
TP05	3.9	Slow rate of flow	N
TP06	-	None encountered.	N
TP06A	3.1	Trickle rate of flow	N

Two (02) number 50mm dia. HDPE standpipe wells were constructed to allow for groundwater monitoring. The construction details are summarised below.

SUMMARY OF STANDPIPE CONSTRUCTION

Location	Depth Top (m bgl)	Depth Base (bgl)	Diameter (mm)	Pipe Type	Pipe Details
BH02	0.00	2.00	50	PLAIN	Plain.
DEUZ	2.00	8.50	50	SLOTTED	Slotted.
PHOC	0.00	3.50	50	PLAIN	Plain.
BH06	3.50	7.00	50	SLOTTED	Slotted.

Exploratory locations were backfilled with their arisings or gravel and bentonite for locations with monitoring wells. Backfill details are displayed graphically on the accompanying logs and summarised below.

SUMMARY OF STANDPIPE DIPS

Location	08/02/2022
Location	Depth (m bgl)
BH02	Dry
BH06	4.4

SUMMARY OF BACKFILL

GRAVEL Backfill to installation/borehole

uPVC slotted pipe

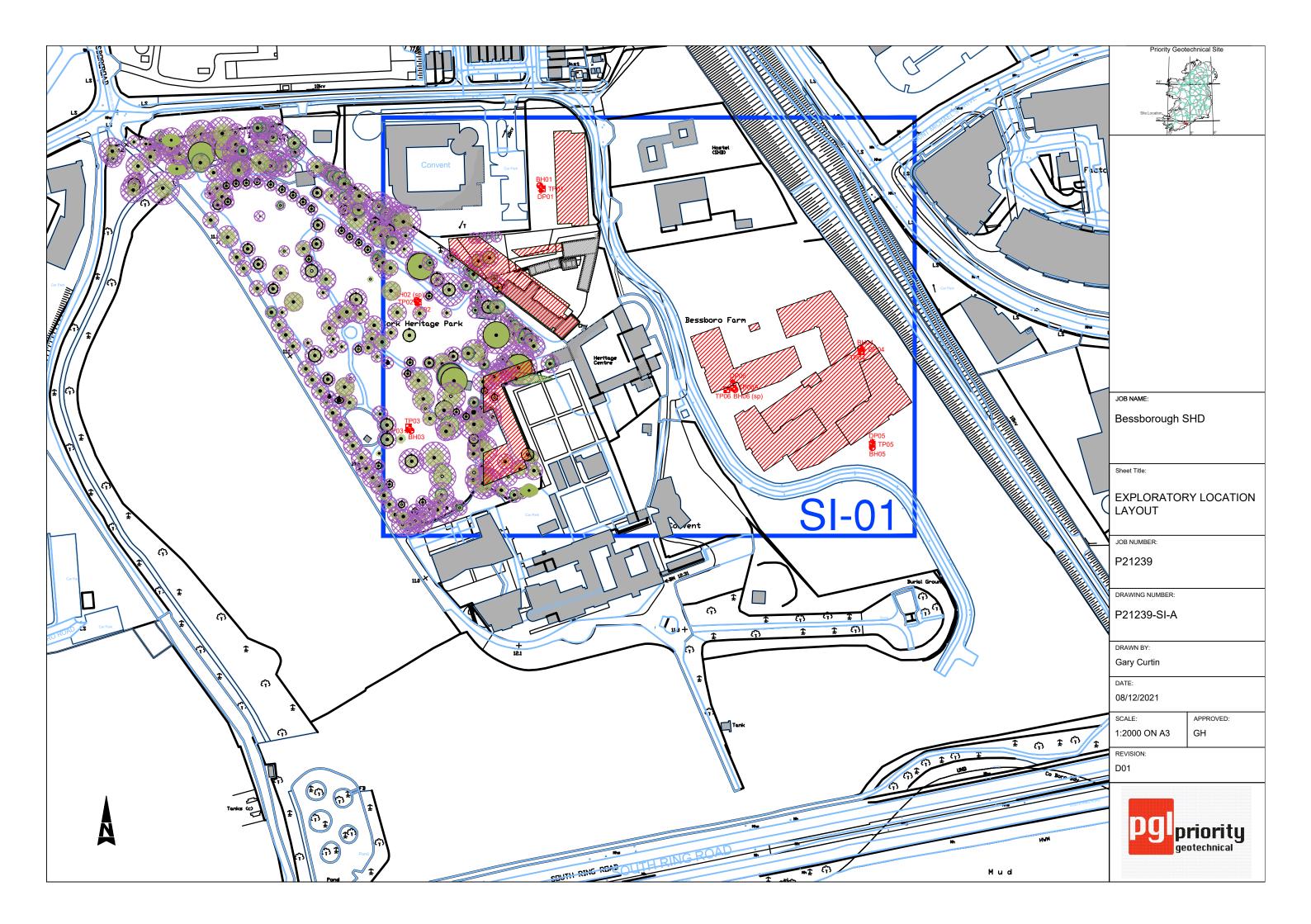
Should you have any queries in relation to the data collected and presented herein, please do not hesitate to contact our office.

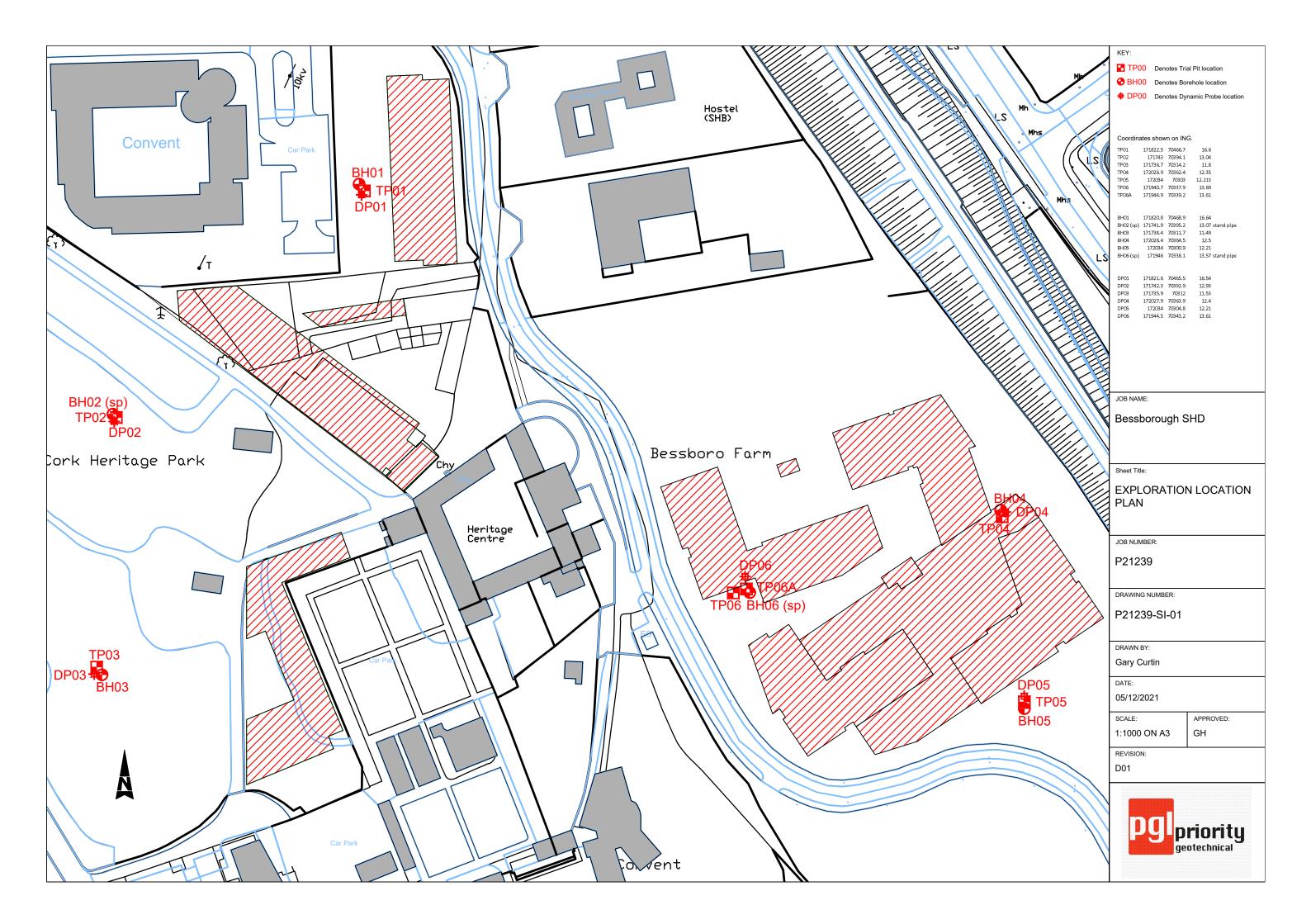
Yours sincerely, For **Priority Geotechnical**,

SMErence

James McSweeney BSc Engineering Geologist

No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations.

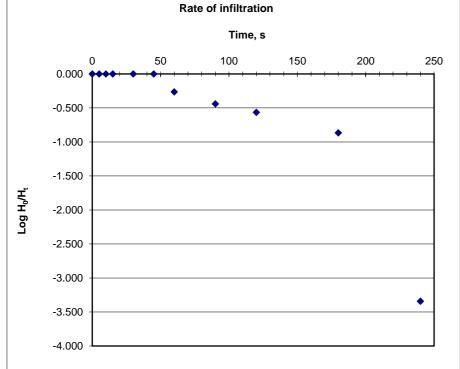

No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.


This report has been prepared for Employer and their Representative as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

P21239_Rp_F02

ARISINGS Backfill

BENTONITE Backfill to installation

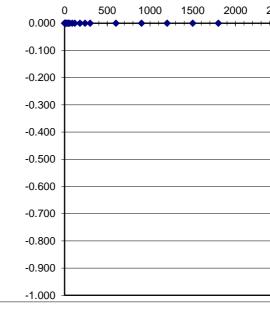

10.5			אסע נוסו ה י				gl prio	nical		www.p	ax: 021 463 prioritygeot		ie		Logged B CS	She
. 0	MBOLS ON	EXPLORATO		RECORDS		Proj	ect Nam	e: Bessbo	ro SHD		oject No. 21239		Co-ords	: 171821E - 70	469N	Но
or	s are in metres or millir	netres				Loca	ation:	Mahon,	Cork				Level:	16.64 m	OD	
						Clier	nt:	Estuary	View Er	nt. Ltd			Date:	13/01/2022	-	14/01/20
	Description						Water	-								
Easily crum	Ibieu					Well Backfil	Strike	Depth (m bgl)		Note Situ Testing Results	Depth (m bgl)	Level (mOD)	Legend	Str	atum Descrip	tion
								0.00 - 1.00	B	Results			0	Brown red, slightly	sandy slightly g	ravelly CLAY.
		n diameter sample, () de	enotes number of blow	vs to drive sampler									0	is fine to coarse. G to sub-rounded. D		
	F- not recovered, P- Undisturbed 38mm													limestone boulders		,
	Piston sample - distu	•											0	>		
	ulk sample - distur							4.00.000			1.00	45.00		2		
	Jar Sample - disturb						8	1.00 - 2.00	B SPT	65 (5,10/65 for	1.00	15.64	0.0.0	Firm, brown red, si	lightly sandy slig	htly gravelly
	Water Sample	Eu -							(C)	150mm)				with low cobble co		
	California Bearing Ra	atio mould cample												are sub-angular, li	mestone with dia	a 63-80mm.
		•	c .										0 - 0	1.20m - 1.30m: Di	riller noted: Bo	
		Contamination Analysis												SPT blow counts I	locally.	
		n Test S lump sample fro	on spirt sampler				8	2.00 - 3.00	B				0.000	2		
Al								2.00	SPT (C)	N=15 (3,3/4,4,3,4)				ž.		
	Total Core Recovery		* lagat - 6 11 11	· · · · · · · · · · · · · · · · · · ·										222		
		(length of core having a											0	1		
		ation (length of solid cor											0.000	2		
u		R, SCR and RQD, the res						3.00 - 4.00	в		3.00	13.64				
		mm (Minimum/Average/	/Maximum) NI - non ii	ntact, NR - no recovery			8	3.00	SPT	N=15 (3,3/4,4,3,4)	0.00	.0.04		Firm, brown red, s with high cobble co	lightly sandy slig	htly gravell
1	Assumed Zone of Co	ore Loss							(C)					Gravel is fine to co		
Non	intact						8							Cobbles are sub-re	ounded, limestor	ne with dia
							8							63-120mm. Driller boulders.	describes: Hard	gravelly cla
										00/01/01/01						
Groundwa	iter strike							4.00	SPT (C)	90 (9,10/90 for 225mm)				<u>1</u>		
Grour	ndwater level :	fter standing period								22311111)						
		onth)/Depth to water at	t end of previous shift	shown above the date			4				4.40	12.24	17:A-18-05	End	of Borehole at 4.	400m
		at beginning of shift give														
	Standard Penetratic	n Test - split barrel samp	pler													
	Standard Penetratic	n Test - solid 60º cone														
	Self Weight Penetra	tion														
	U U	and Vane Test (R) demon	nstrates remoulded st	rength												
	Permeability Test			-												
	Penetrometer	Test														
RTIES	j.															
		n Test - blows required t	to drive 300mm after	seating drive												
		y mm within the Standa														
		y mm within the seating														
	Undrained Shear Str															
	California Bearing Ra															
SIZE	S															
-	Index Letter	Nominal Di	iameter (mm)													
		Borehole	Core													
-	Ν	75	54													
	Н	99	76													
	Р	120	92								<u> </u>				6 k 111 -	
S		146	113			Grou	undwate	r:			Hole	e Informa	tion:		Chiselling I Top (m) Ba	se (m) Duration
							k (m Ros		Sealed		Dep	th (m bgl)	Hole Dia (I		1.20 1	1.30 01 4.40 01
				1	-4	bg	1)	bgl) (mins)	bgl	None encounter	ered.	4.40	200	200	_	
											Equ	ipment:	Dando 2	GW (m bal)	Shift	Depth (m bgl)
	l			Key S		Rema	arks:						Shi	int Data: 13	3/01/2022 08:00	0.00
1				I		Cable		on borehole termi	moted at	1 10mm h ml			1	Dry 13	3/01/2022 18:00	2.00

pg	prior geotechn	ity _{ical}		T	el: 021 4 ax: 021 4				Drilled By PC Logged By CS	Borehole N BH02 Sheet 1 of	
Projec	ct Name	e: Bessbo	ro SHD		oject No. 1239		Co-ords:	: 171742E - 703	95N	Hole Type CP	е
ocat	ion:	Mahon,	Cork				Level:	13.07 m	OD	Scale 1:50	
lient	:	Estuary	View E	nt. Ltd			Date:	10/01/2022	- 1	1/01/2022	
Nell ackfill	Water Strike	Sample	e and Ir	n Situ Testing	Depth (m bgl)		Legend	Stra	tum Description		
	(m bgl)	Depth (m bgl) 0.00 - 1.00 1.00 - 2.00 1.00 2.00 - 3.00 2.00 - 3.00 3.00 - 4.00 3.00 - 4.00 3.00 - 4.00 5.00 - 6.00 5.00 - 6.00 6.00 - 7.00 6.00 - 7.00 8.00	Type B B SPT (C) SPT (C)	Results N=6 (1,1/1,1,2,2) N=7 (1,1/1,2,2,2) N=12 (3,3/2,3,3,4) N=12 (3,3/2,3,3,4) N=21 (4,4/5,5,6,5) N=24 (5,6/5,6,7,6) N=29 (6,6/7,7,8,7) N=33 (7,7/8,8,9,8) N=32 (7,8/9,5,9,9)	1.00	12.07 10.07 8.07		to sub-rounded. Dri Soft, brown red, slig Sand is fine to coar: angular to sub-roun clay. 2.00m - 3.00m: Dri Firm to stiff, brown i silty CLAY with low coarse. Gravel is fir rounded. Cobbles a dia 63-170mm dia. Stiff, brown red, slig with medium cobble Gravel is fine to coar	avel is fine to coarse ller describes: Grave phtly sandy slightly g se. Gravel is fine to ded. Driller describe <u>ller not</u> ed: Boulder <u>red</u> , slightly sandy sl cobble content. San te to coarse, sub-an, re sub-rounded, Linr htly sandy slightly g e content. Sand is fin irse, sub-angular to unded, limestone wit	e, sub-angular al clay. ravelly CLAY. cooarse, sub- s: Gravelly rs. ightly gravelly rs. ightly gravelly rs. ravelly CLAY ravelly CLAY re to coarse. sub-rounded.	- 1 2 - 3 4 - 5 6 7 8
								9 년 2010년 1911 1911 191			9
					9.10	3.97	<u></u>	End	of Borehole at 9.100m		1
i rour truck (bgl)		: e to (m After gl) (mins)	Seale	l) Comment	. De	ole Informa epth (m bgl) 9.10	tion: Hole Dia (I 200	mm) Casing Dia (mm 200	2.75 2.00	Duration (hh:mm) 01:00	Tool Chisel Chisel
27				None encounte		quipment:	Dando 2		1		
emar able p		n borehole termi	nated at	9.10m bgl.			Shi	10/ 11/	01/2022 08:00 0 01/2022 18:00 0 01/2022 08:00 0	(m bgl) Remar .00 Start of s .00 End of s .00 Start of s .10 End of bor	shift. shift. shift.

pg	prior geotechnic	ity		l	rity Geotech Tel: 021 463 Fax: 021 463 prioritygeot	1600 38690			Drilled By PC Logged By CS	BH03 Sheet 1 of	
Projec	t Name:	Bessbo	ro SHD		roject No. 21239		Co-ords:	171738E - 703		Hole Type CP	e
Locati	on:	Mahon,	Cork	F	21200		Level:	11.49 m (OD	Scale 1:50	
Client:		Estuary	View E	nt. Ltd			Date:	12/01/2022	12/01/2022		
14/-11	Water Strike	Sample		n Situ Testing	Depth	Level (mOD)	Legend	Stra	tum Description		
	(m bgl)	Depth (m bgl)	Туре	Results	(m bgl)	(mod)		Soft becoming firm,			_
		$1.00 - 2.00 \\ 1.00$ $2.00 - 3.00 \\ 2.00$ $3.00 - 4.00 \\ 3.00$ $4.00 - 5.00 \\ 4.00$ $5.00 - 6.00 \\ 5.00$ $6.00 - 7.00 \\ 6.00$	B SPT (C) B S (C) (C) B SPT (C) B S (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	N=7 (1,1/1,2,2,2) N=7 (1,1/2,2,1,2) N=10 (2,3/3,2,3,2) N=20 (3,4/4,5,5,6) N=26 (6,7/6,6,7,7) N=28 (7,6/6,8,7,7)	4.00 5.00 6.00	7.49 6.49 5.49		Stiff, brown red, slig Sand is fine to coars Stiff, brown red, slig with low cobble con sub-rounded, Limes Stiff, brown red, slig with low cobble con sub-rounded, Limes 6.00m - 8.40m: Dri	se. Gravel is fine to htly sandy slightly g tent. Cobbles are su tone with dia 63-800 htly sandy slightly g tent. Cobbles are su tone with dia 63-800	ravelly CLAY ib-angular to mm. ravelly CLAY ib-angular to nm.	
		7.00 - 8.00 7.00 8.00 - 8.40 8.00	B SPT (C) B SPT (C)	N=34 (7,8/8,9,8,9) 40 (9,10/40 for 150mm)			다 해 나 해 나 해 나 해 나 해 나 해 나 하 3. 너무 너무 너무 너무 너무 나 가 나 2. 너무 다 다 나 다 다 다 다 나 나 나 나 나 나 나 나 나 나 나 나				5
Groun Struck (bgl)			Seale	d (m Commer	nt Dep	3.09 e Informa th (m bgl) 8.40	tion: Hole Dia (m 200			Is: Duration (hh:mm) 01:00	Too Chise
					Equ	ipment:	Dando 20	GW (m bal)	Shift Depth	(m bgl) Remar	۲k۹
Remar l Cable pe		borehole termi	nated at	8.40m bgl.			Shif	t Data: 12/	01/2022 08:00 0	.00 Start of s .40 End of bor	shift

P21239 Falling head permeability test

Location BH ID Test Casing dia Casing de Borehole o GW Influe Date	pth depth	Bessborough SH BH03 1 200 2.00 2.20 2.20 12/01/2022	mm m		H _{w/} H _o	2.20	
Min	Sec	depth, m bgl	vol, cu.m	Ht	log H ₀ /H _t	1	
0	0	0.000	0.00000	2.200	0.000	1	
0.083	5	0.000	0.00000	2.200	0.000		
0.17	10	0.000	0.00000	2.200	0.000		
0.25	15	0.000	0.00000	2.200	0.000		
0.5	30	0.000	0.00000	2.200	0.000]	
0.75	45	0.000	0.00000	2.200	0.000]	
1	60	1.000	0.03140	1.200	-0.263		
1.5	90	1.400	0.04396	0.800	-0.439	k _{mean}	1.12E-03 ms ⁻¹
2	120	1.600	0.05024	0.600	-0.564	k _H = k _V	
3	180	1.900	0.05966	0.300	-0.865		
4	240	2.199	0.06905	0.001	-3.342		
		Rate of infiltr	ation				



pg	prior geotechni	ity _{ical}		T	ty Geotech Tel: 021 463 ax: 021 463 rioritygeot	1600 38690		Logg	ed By	Borehole No. BH04 Sheet 1 of 1
Projec	t Name	: Bessbor	ro SHD		oject No. 1239		Co-ords:	172026E - 70364N		Hole Type CP
.ocati	ion:	Mahon,	Cork				Level:	12.50 m OD 5cale 1:50		
lient:	:	Estuary	View E	nt. Ltd			Date:	14/01/2022	- 14	4/01/2022
Vell Ickfill	Water Strike	•		n Situ Testing	Depth (m bgl)	Level (mOD)	Legend	Stratum Description		
	(m bgl)	Depth (m bgl) 1.00 - 2.00 1.00	B SPT (C)	Results N=9 (1,1/2,2,3,2)	1.00	11.50		Dark brown, slightly sandy sl plant material. Firm, dark brown, slightly sar Sand is fine to coarse. Grave	ndy slightly g	ravelly SILT.
		2.00 - 3.00 2.00	B SPT (C)	N=9 (2,2/2,3,2,2)	2.00	10.50		Firm, brown, slightly sandy slow cobble content. Sand is f fine to coarse, sub-angular to are sub-angular to sub-round 63-120mm.	fine to coars	e. Gravel is ed. Cobbles
		3.00 - 4.00 3.00	B SPT (C)	N=14 (2,3/3,4,3,4)	3.00	9.50		Firm to stiff, brown, slightly s: CLAY with low cobble conten Gravel is fine to coarse, sub- Cobbles are sub-angular to s with dia 63-120mm. Driller de	nt. Sand is fir angular to s sub-rounded	ne to coarse. ub-rounded. , Limestone
		4.00 - 5.00 4.00	B SPT (C)	N=22 (4,4/5,6,5,6)						
		5.00 - 6.00 5.00	B SPT (C)	N=29 (6,5/7,7,8,7)	5.00	7.50		Stiff, brown, slightly sandy sli with low cobble and boulder coarse. Gravel is fine to coar rounded. Cobbles are sub-ar Limestone with dia 63-70mm rounded, Limestone with dia	content. Sar se, sub-ang ngular to sub n. Boulders a	nd is fine to ular to sub- p-rounded,
		6.00 - 7.00 6.00 7.00	B SPT (C) SPT	N=37 (7,8/8,9,9,11) 75 (10,15/75 for	6.00	6.50		Stiff, brown, slightly sandy sli with low cobble content. San is fine to coarse, sub-angular are sub-angular to sub-round 63-90mm.	d is fine to c r to sub-rour	oarse. Gravel ded. Cobbles
			(C)	150mm)	7.30	5.20	<u>*************************************</u>	End of Borehol	e at 7.300m	
					.			Chisel	ling Details	s:
iroun truck (bgl)		to (m After gl) (mins)		ed (m Comment JI) None encounte	Dep ered.	e Informa th (m bgl) 7.30 ipment:	tion: Hole Dia (m 200 Dando 20	Top (m) Casing Dia (mm) 3.80 200 7.20 000. 1000) Base (m) 4.00 7.30	Duration (hh:mm) To 01:00 Chi 01:00 Chi
emar able pe		n borehole termir	nated at	7.30m bgl.			Shif	t Data: GW (m bgl) Shift 14/01/2022 Dry 14/01/2022		00 Start of shi

pç	prior geotechn	ity _{ical}		Te Fa	el: 021 4 ax: 021 4				Drilled By PC Logged By CS	Borehole No BH05 Sheet 1 of 1	
roje	ct Name	e: Bessbor	o SHD		oject No 1239		Co-ords:	172034E - 703	301N	Hole Type CP	
ocat	ion:	Mahon,	Cork				Level:	12.21 m	OD	Scale 1:50	
ient	:	Estuary	View E	nt. Ltd			Date:	17/01/2022	_	17/01/2022	
ell kfill	Water Strike	•		n Situ Testing	Depth (m bg		Legend	Stra	1		
	(m bgl)	Depth (m bgl) 0.00 - 1.00	Type B	Results	(in bg	i) (iii00)			, brown red, slightly		
		1.00 - 2.00 1.00 2.00 - 3.00	B SPT (C) B	N=8 (1,1/2,2,2,2)				gravelly CLAY. San coarse, sub-angula	d is fine to coarse. G	Sravei is tine to	
		3.00	SPT (C)	N=13 (2,3/3,4,3,3)							
		4.00 - 5.00 4.00	B SPT (C)	N=16 (3,4/3,4,4,5)							
		5.00 - 6.00 5.00	B SPT (C)	N=30 (5,6/7,7,8,8)	5.00	7.21		with low cobble cor is fine to coarse, su	ghtly sandy slightly g ntent. Sand is fine to ib-angular to sub-rou sub-rounded, 63-120 /.	coarse. Gravel unded. Cobbles	
		6.00 - 7.00 6.00 7.00	B SPT (C) SPT (C)	N=38 (7,8/9,9,10,10) 90 (9,10/90 for 225mm)	6.00	6.21		with low cobble cor is fine to coarse. G to subrounded. C rounded, 63-120m	ghtly sandy slightly g ttent and low boulde ravel is fine to coars obbles are sub-angu n dia., Limestone litt ngular, 200-250mm	r content. Sand e, sub-angular ilar to sub- nology.	
					7.40	4.81		End	of Borehole at 7.400n	n	
	dwata-				_ ,,				Chiselling Detai		
our uck bgl)		: e to (m After ggl) (mins)	Seale		red.	ole Informa Depth (m bgl) 7.40 quipment:	Hole Dia (n 200	200	Top (m) Base (m)	Duration (hh:mm) 1 01:00 Cl	Too his his
ma i ble p		n borehole termi	nated at	7.40m bgl, obstruction.			Shi		/01/2022 08:00 0	h (m bgl) Remark 0.00 Start of sh 7.40 End of bore	hift

P21239	Falling h	ead permeability te	est
Location BH ID Test Casing dia Casing de Borehole o GW Influe Date	epth depth	Bessborough SH BH05 1 200 1.50 2.00 2.00 17/01/2022	mm m

Min	S	ec	depth, m bgl	vol, cu.m	H _t	log H ₀ /H _t		
0		0	0.000	0.00000	2.000	0.000		
0.08	3	5	0.000	0.00000	2.000	0.000		
0.17	7	10	0.000	0.00000	2.000	0.000		
0.25	5	15	0.000	0.00000	2.000	0.000		
0.5		30	0.000	0.00000	2.000	0.000		
0.75	5	45	0.000	0.00000	2.000	0.000		
1		60	0.000	0.00000	2.000	0.000		
1.5		90	0.000	0.00000	2.000	0.000	k _{mean} -	ms ⁻¹
2		120	0.000	0.00000	2.000	0.000	k _H = k _v	
3		180	0.000	0.00000	2.000	0.000		
4		240	0.000	0.00000	2.000	0.000		
5		300	0.000	0.00000	2.000	0.000		
10		600	0.000	0.00000	2.000	0.000		
15		900	0.000	0.00000	2.000	0.000		
20		1200	0.000	0.00000	2.000	0.000		
25		1500	0.000	0.00000	2.000	0.000		
30		1800	0.000	0.00000	2.000			
45		2700	0.000	0.00000	2.000			
60		3600	0.000	0.00000	2.000	0.000		
μ/ ₀ Η	0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70		500 1000 1500	2000 2500	3000 350			
	-							

Notes:

2.00

No Change in groundwater level observed after 60 mins. Infiltration rate mot determined.

pg	prior geotechn	rity		ן F www.p	ty Geotech fel: 021 463 ax: 021 463 prioritygeot	31600 38690			Drilled By PC Logged By CS	Borehole N BH06 Sheet 1 of) F 1
Projec	t Name	e: Bessbo	ro SHD		oject No. 1239		Co-ords:	171946E - 703	338N	Hole Typ CP	e
ocati	on:	Mahon,	Cork				Level:	13.57 m	OD	Scale 1:50	
lient		Estuary	View E	nt. Ltd			Date:	13/01/2022	-	13/01/2022	
Well ackfill	Water Strike	-		n Situ Testing	Depth (m bgl)	Level (mOD)	Legend	Stra	atum Description	l	
	(m bgl)	Depth (m bgl) 0.00 - 1.00 1.00 - 2.00 1.00 2.00 - 3.00 2.00 3.00 - 4.00 3.00 4.00 - 5.00 4.00 5.00 - 6.00 5.00 6.00 - 7.00	Type B B SPT (C) B SPT (C) B SPT (C) B SPT (C) B SPT (C) B SPT (C)	Results N=6 (1,1/2,2,1,1) N=8 (1,1/2,2,2,2) N=9 (2,2/3,2,2,2) N=13 (3,2/3,3,4,3) N=28 (4,6/6,7,7,8) N=33 (7,7/8,8,9,8)	6.00	12.57		4.00m - 6.00m: Dr	brown red, slightly s Sand is fine to coars angular to sub-round iller described: 'we ghtly sandy slightly g ble content. Sand is f arse, sub-angular to ngular, limestone with	se. Gravel is ded. ht' soils.	- 1 2 3 4
	dwater					6.57 e Informa			5.75 5.05	ils: Duration (hh:mm)	Tool
truck (bgl)		e to (m After ogl) (mins)	Seale bg		ered.	th (m bgl) 7.00	Hole Dia (m 200 Dando 20	200	n) 5.75 5.95 6.90 7.00		Chise Chise
emar able p		n borehole termi	nated at	7.0m bgl.	IE40			it Data: ^{GW (m bgl)} 13	8/01/2022 08:00 0	n (m bgl) Rema 1.00 Start of 5 1.00 End of bor	shift

pgl _p	priority eotechnical			v	Priority Tel Fax www.prio
Project Name:	Bessboro Sł	HD		Proje P212	ct No. 39
Locatior	n: Mahon, Co	rk			
Client:	Estuary Vie	w Ent.	Ltd		1
Water Strike & Backfill	Samp Depth (m)	les & In S	Situ Testing Results	Depth (m)	Level (m OD)
				0.20	16.40
	0.70 - 1.50 0.70 - 1.50	B D		0.65	15.95
	1.50 - 2.50 1.50 - 2.50	B D			
	2.50 - 3.50 2.50 - 3.50	B D			
				3.90	12.70
Stability: Plant: Backfill:	14T track mach Arisings.		90m bgl on rock/ larg		

G	eotechr	Trial Pit No			
	021 4631 021 463		TP01		
		chnical.ie	Sheet 1 of 1		
		Co-ords:171822E - 70467N	Date		
		Level: 16.60m OD	11/01/2022		
		Dimensions (m):	Scale		
		Depth: 	1:25 Logged		
		3.90m BGL	OD		
)	Legend	Stratum Description			
		(TOPSOIL) Soft to firm, brown, slightly sandy s			
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to coarse, sub-rounded to			
		rounded. (MADE GROUND) Soft to firm, brown, slightly s	sandy		
		slightly gravelly CLAY with pottery fragments, b timber and plastics. Sand is fine to coarse, Gra			
		fine to coarse, sub-rounded to rounded.	-		
	<u>=074</u>	Soft to firm becoming stiff from 2.80m, brown, s	lightly		
	ČČ~Q	sandy slightly gravelly CLAY with medium cobb	le –		
	<u> </u>	content and low boulder content. Sand is fine to Gravel is fine to coarse, sub-rounded to rounde	. –		
	<u> </u>	Cobbles are sub-rounded to rounded. Boulders rounded to rounded. (Assumed Natural).	sub- 1 -		
	<u> </u>				
	<u> </u>		-		
	¢&&0		-		
	¢òx ò		-		
	¢à%ó		-		
	¢xx Ó		-		
	¢xx Ó		-		
	¢		-		
	<u> </u>		2 -		
	¢x*0		-		
			-		
			-		
	¢×~~o	ር 			
	¢x×v		-		
	¢xxo		-		
			-		
	¢xxo		3 -		
	\$ <u>~</u> ~0	ସି ଜୁନ			
		4 			
		4	-		
			-		
	<u>~</u> V^~?X &&~~		-		
	<u>~</u> V^~?X &&~~				
	10000 ×	End of Pit at 3.900m			
			4 -		
			-		
			-		
			5 —		
0	Groundwa	ater: None encountered.			

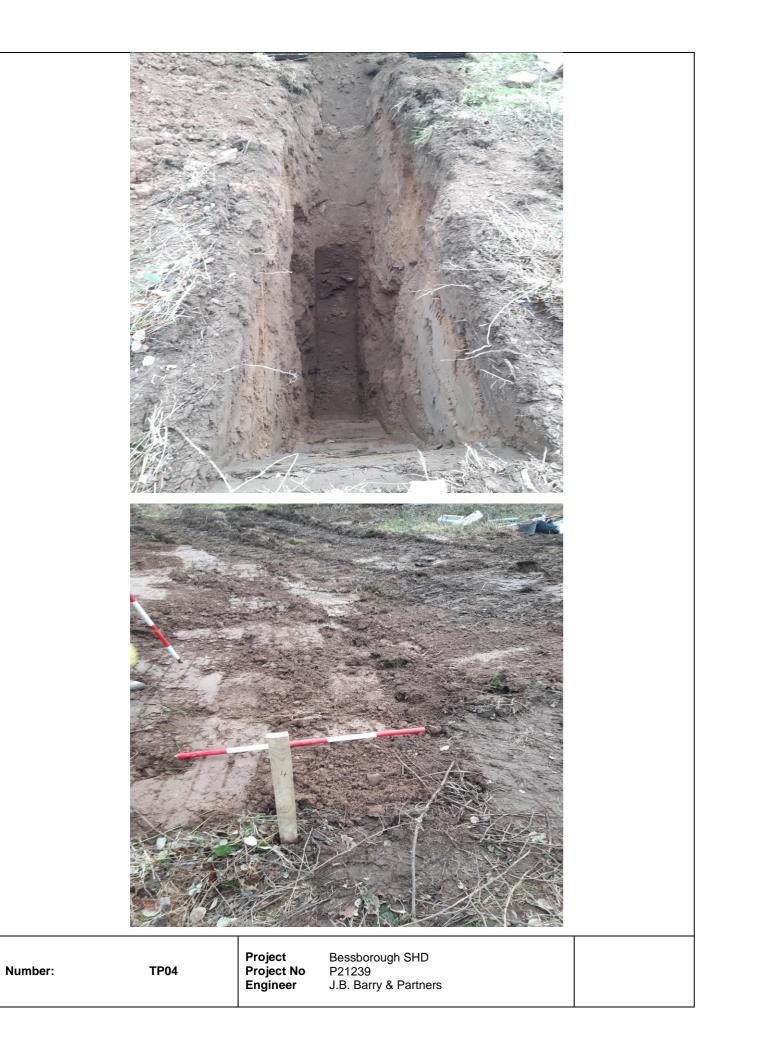
			<image/>	
Number:	TP01	Project Project No Engineer	Bessborough SHD P21239 J.B. Barry & Partners	

pgl _{ge}	riority ^{otechnical}		Priority (Tel: Fax: www.prior		
Project Name:	Bessboro Sł	HD		Proje P212	ct No. 39
Location	: Mahon, Co	rk			
Client:	Estuary Vie	ew Ent. Lto	1		
Water Strike & Backfill	Samp Depth (m)	les & In Situ Type	r Testing Results	Depth (m)	Level (m OD)
				0.30	12.74
	0.50 - 1.00 0.50 - 1.00	B D			
	1.20 - 2.30 1.20 - 2.30	B D		1.20	11.84
	2.30 - 3.20 2.30 - 3.20	B D		2.30	10.74
				3.20	9.84
Stability: Plant: Backfill:	14T track mach	ine			

G	eotechr	Trial Pit No	
	021 4631 021 463		TP02
		chnical.ie	Sheet 1 of 1
		Co-ords: 171743E - 70394N	Date
		Level: 13.04m OD	10/01/2022
		Dimensions (m):	Scale
		Depth: 	1:25 Logged
		3.20m BGL	OD
)	Legend	Stratum Description	
		(TOPSOIL) Soft to firm, brown, slightly sandy sl	lightly _
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to coarse, sub-rounded to	
		rounded. (MADE GROUND) Soft to firm, light brown, slig	-
		sandy slightly gravelly SILT with medium cobble	e -
content, medium boulder content and pottery fragments. Sand is fine to coarse. Gravel is fine to			
coarse, sub-angular to rounded. Cobbles are angular to sub-rounded. Boulders are angular to sub-rounded.			
		Soft, light purple brown, slightly gravelly silty SA	AND.
	× × × × × × ×	Sand is fine to coarse. Gravel is fine to coarse, angular to rounded.	
	× × × ×		
	× × × ×	34 	
	× × × ×		
	`* * * * * * * *		-
	$\times \times $		2 -
	× × × ×		
	×××××		-
	Ŏ÷Ŏ÷	Soft to firm, purple brown, slightly sandy gravel with medium cobble content and medium bould	
		content. Sand is fine to coarse. Gravel is fine to sub-rounded to rounded. Cobbles are sub-roun	coarse,
		rounded. Boulders are sub-rounded to rounded	
	0-0-0		
	0.0		
			3 —
		End of Pit at 3.200m	
			5 —
0	Groundwa	ater: None encountered.	

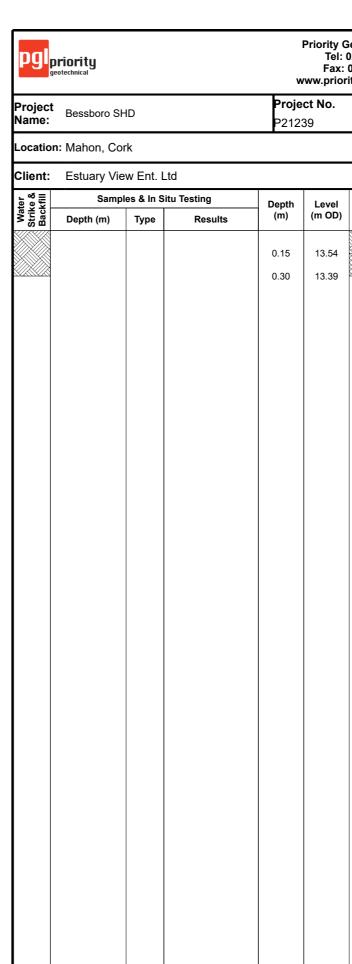
Pyip	roject Bessboro SHD				
Project Name:	Bessboro Sl	HD		Proje P212	ct No. 39
Locatior	n: Mahon, Co	ork			
Client:	Estuary Vie				1
Water Strike & Backfill	Samp Depth (m)	Type	Results	Depth (m)	Level (m OD)
	0.50 - 1.50 0.50 - 1.50	B D	results	0.35	11.45
	1.50 - 2.50 1.50 - 2.50	B D		1.10	10.70
	2.50 - 3.50 2.50 - 3.50	B D			
	3.50 - 4.50 3.50 - 4.50	B D			
				4.50	7.30
	Moderate 14T track mach				<u> </u>

G	Geotechr	Trial Pit No		
	021 4631 021 463		TP0	3
		chnical.ie	Sheet 1	of 1
		Co-ords:171737E - 70314N	Date	
		Level: 11.80m OD	11/01/20	
		Dimensions (m): 3.80	Scale 1:25	•
		Depth: 1	Logge	d
		4.50m BGL	ŐĎ	
	Legend	Stratum Description		
<u></u>		(TOPSOIL) Soft, dark brown, slightly sandy slig	btly	
		gravelly SILT with grass and rootlets. Sand is fi	ne to	-
		coarse. Gravel is fine to coarse, sub-angular to rounded.		-
		(MADE GROUND) Soft to firm, purple brown, s	lightly	-
		sandy gravelly CLAY with medium cobble conte rare pottery and glass fragments. Sand is fine to	ent and o	
		coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.		-
				-
				-
				1 -
		(ASSUMED NATURAL) Soft to firm, purple brow slightly sandy gravelly CLAY with medium cobb	wn, Ie	-
		content. Sand is fine to coarse. Gravel is fine to	coarse,	-
		sub-rounded to rounded. Cobbles are sub-roun rounded.	ded to	-
	<u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
	<u>~~~~</u>			-
	<u>~~~~</u>			-
	¢x×v			-
	¢xxx			2 —
	<u> </u>			-
	<u>ČČČ</u> Č			
	<u> </u>			-
	<u> </u>			-
				-
				-
				3 —
				5 -
				-
	<u>~~~~</u>			-
	¢xxx			-
	¢xxx			-
	\$ <u>8</u> \$\$\$0			-
	2000			
	<u> </u>			4 —
	<u>¢òx ò</u>			-
				-
				-
	<u>~0× 9</u> /	End of Pit at 4.500m		
				-
				-
				5 —
(Groundwa	ater: None encountered.		



Project Name: Bessboro SHD SHD Project No. Project Project No. P21239						
Project Name:	Bessboro Sł	HD				
ocation	: Mahon, Co	rk				
Client:	Estuary Vie	ew Ent. Lto	ł			
water Strike & Backfill	Samp Depth (m)	les & In Situ Type	Results	Depth (m)	Level (m OD)	
,				0.30	12.05	
	0.50 - 1.50 0.50 - 1.50	BD		0.70	11.65	
	1.50 - 2.50 1.50 - 2.50	BD		1.50	10.85	
	2.50 - 3.50 2.50 - 3.50	B D				
	3.50 - 4.50 3.50 - 4.50	B D				
bility:	Moderate 14T track mach			4.50	7.85	

	eotechr	Trial Pit No	
)21 4631 021 463		TP04
or	itygeote	chnical.ie	Sheet 1 of 1
		Co-ords:172027E - 70362N	Date
		Level: 12.35m OD	13/01/2022
		Dimensions (m):	Scale
		Depth:	1:25 Logged
		4.50m BGL	OD
	Legend	Stratum Description	
)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		(TOPSOIL) Soft to firm, brown, slightly sandy sl gravelly SILT with grass and rootlets. Sand is fil	ne to
		coarse. Gravel is fine to medium, sub-angular t rounded.	o sub-
		(MADE GROUND): Soft, brown slightly silty slig gravelly SAND with plastic waste. Sand is fine t	ihtly
		coarse. Gravel is fine to coarse, sub-rounded to rounded.	
		Tounded.	
	XXX	(ASSUMED NATURAL): Soft, brown, slightly si slightly gravelly SAND. Sand is fine to coarse. (lty .
	×××× ××××	fine to coarse, sub-rounded to rounded.	
	. × . × × . × . ×		1 -
	* * * * * * * *		
	× × × × × × ×	3	
	× ^ × × × ×		
		Soft to firm, slightly sandy slightly gravelly CLA	
		low cobble content. Sand is fine to coarse. Gra- fine to coarse, sub-rounded to rounded. Cobble	
		sub-rounded to rounded.	
			2 -
			-
			-
			-
			3 -
			-
			-
			-
		्र 2017	-
			-
			4 -
		End of Pit at 4.500m	
			-
			5
7	Proundar		5 -
ľ	BIOUNDW	ater: 3.90m: Trickle rate of flow	
L			



Project Name:	Bessboro SI	HD		Proje	ww.prio
	n: Mahon, Co	rk		P212	39
Client:	Estuary Vie		Ltd		
ter kfill			Situ Testing	Depth	Level
Water Strike & Backfill	Depth (m)	Туре	Results	(m)	(m OD)
				0.30	11.91
	0.70 - 1.50 0.70 - 1.50	B D		0.70	11.51
	1.50 - 2.50 1.50 - 2.50	B D			
	2.50 - 3.50 2.50 - 3.50	B D			
•	3.50 - 4.50 3.50 - 4.50	B D			
				4.50	7.71
Stability: Plant: Backfill:	Good 14T track mach Arisings.	ine			

G	eotechr	Trial Pit No		
	021 4631 021 463		TP0	5
		chnical.ie	Sheet 1	of 1
		Co-ords:172034E - 70303N	Date	
		Level: 12.21m OD	14/01/20	
		Dimensions (m):	Scale 1:25	
		Depth: 1	Logge	
		4.50m BGL	ŐĎ	
	Legend	Stratum Description		
		(TOPSOIL) Soft to firm, brown, slightly sandy sl	lightly	_
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to medium, sub-angular t	ne to	-
		rounded.		-
		(MADE GROUND) Soft to firm, brown orange, s sandy gravelly CLAY. Sand is fine to coarse. Gr		-
		fine to coarse, sub-rounded to rounded.		-
		F . (1976)		-
	<u> </u>	Firm to stiff, purple brown, slightly sandy slightly gravelly CLAY with medium cobble content and	low	-
		boulder content. Sand is fine to coarse. Gravel coarse, sub-rounded to rounded. Cobbles are s		-
		rounded to rounded. Boulders are sub-rounded rounded. (Assumed Natural).	to	1
				-
	<u>~~~~</u>	ि जि में 1		-
	\$X\$\$Q			-
	ČČČQČ			-
	<u> </u>			-
	<u> </u>			-
	<u> </u>			2 —
				-
				-
				-
	<u>~0×-74</u> .&.2.014			-
				-
	ČĂŽ Ó			-
	ČČ [×] O			-
	<u> </u>			3 —
	<u> </u>			-
				-
				-
				-
	$\overline{\langle X, X, X \rangle}$			-
	¢xxx			- - 1 -
	<u> </u>			4 -
	ČČ ^Č O			-
	<u>×ò×ò</u>	977 T		-
	<u> </u>	End of Pit at 4.500m		
				-
				-
				5 —
C	Groundwa	ater: 3.90m: Slow rate of flow		

 Stability:
 Good

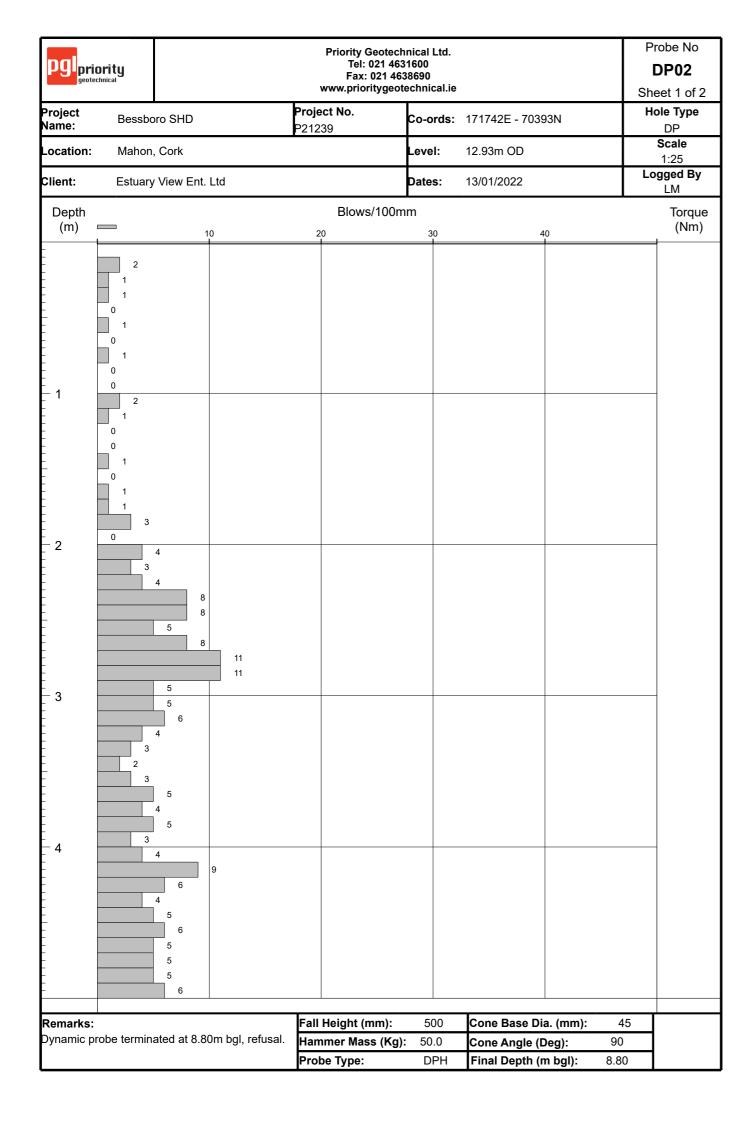
 Plant:
 14T track machine

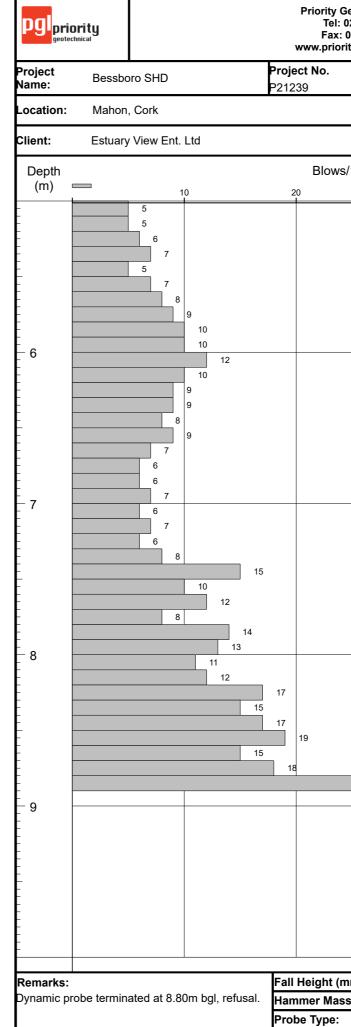
 Backfill:
 Arisings.

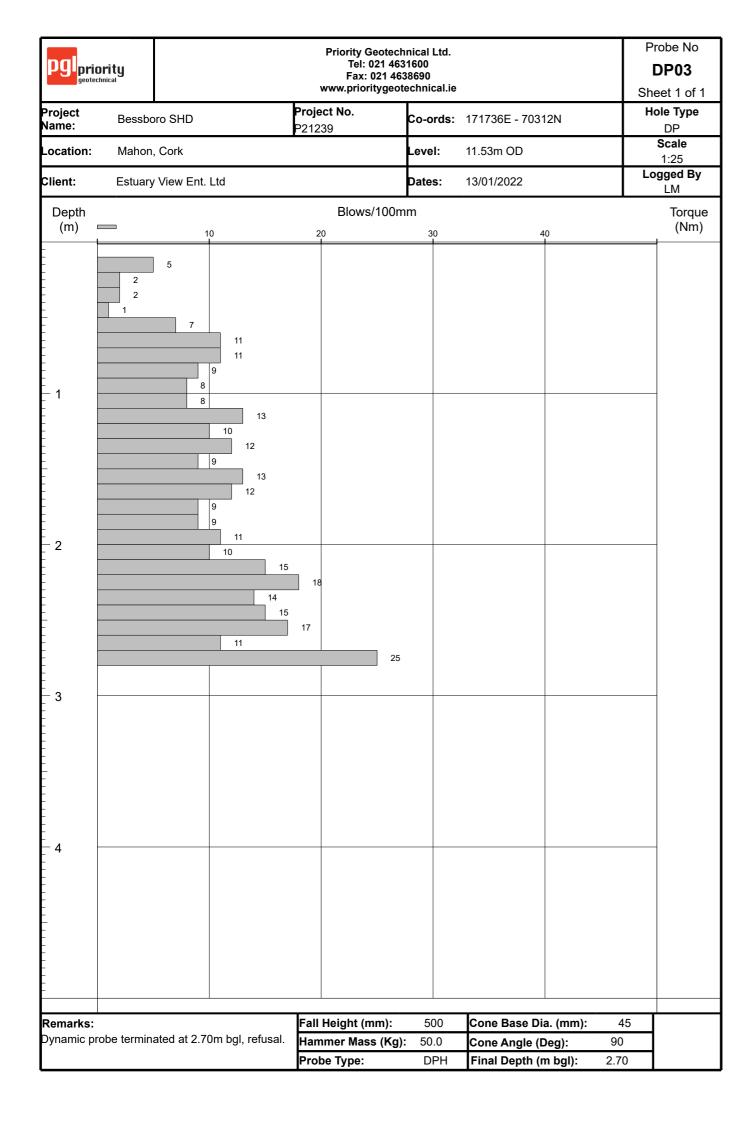
 Remarks:
 Trial pit terminated at 0.30m bgl, due to encountering a concrete sla

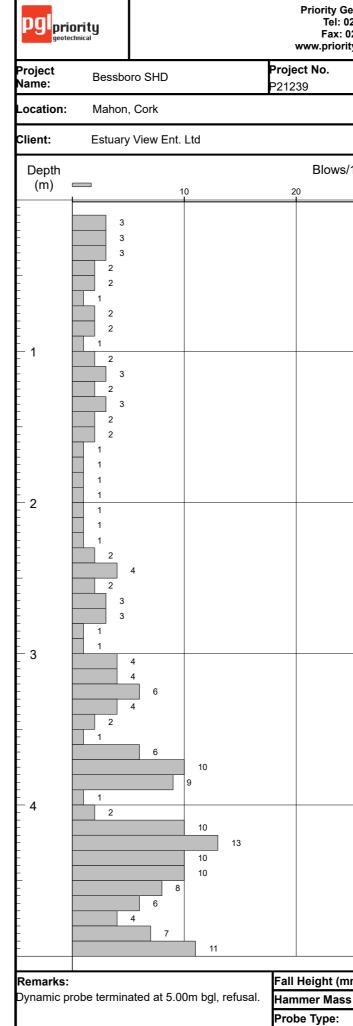
Number		Project Broised No.	Bessborough SHD		
Number:	TP05	Project Project No Engineer	Bessborough SHD P21239 J.B. Barry & Partners		

G	eotechr	nical Ltd.	Trial Pit No	
(021 4631 021 463	600	TP06	5
or	itygeote	chnical.ie	Sheet 1 d	of 1
		Co-ords: 171941E - 70338N	Date	
		Level: 13.69m OD	12/01/20	
		Dimensions (m):	Scale 1:25	
		Depth:	Logge	d
		0.30m BGL	ŐĎ	
	Legend	Stratum Description		
		(TOPSOIL) Soft to firm, slightly sandy slightly g	ravelly	
		SILT with grass and rootlets. (MADE GROUND) Firm to stiff, light blue grey,		-
		sandy gravelly CLAY. Sand is fine to coarse. Gr fine to coarse, sub-angular.	avel is	-
		Concrete Slab - drain/sewer access cover. End of Pit at 0.300m	/	-
				-
				-
				-
				1
				-
				-
				-
				-
				-
				-
				2 —
				-
				-
				-
				-
				-
				-
				-
				3 —
				-
				-
				-
				-
				-
				-
				4 —
				-
				-
				-
				-
				-
				-
				5 —
ľ	sroundwa	ater: None encountered.		
L ab	covering	an apparent un-used drain. Pit relocated.		
	serenny			

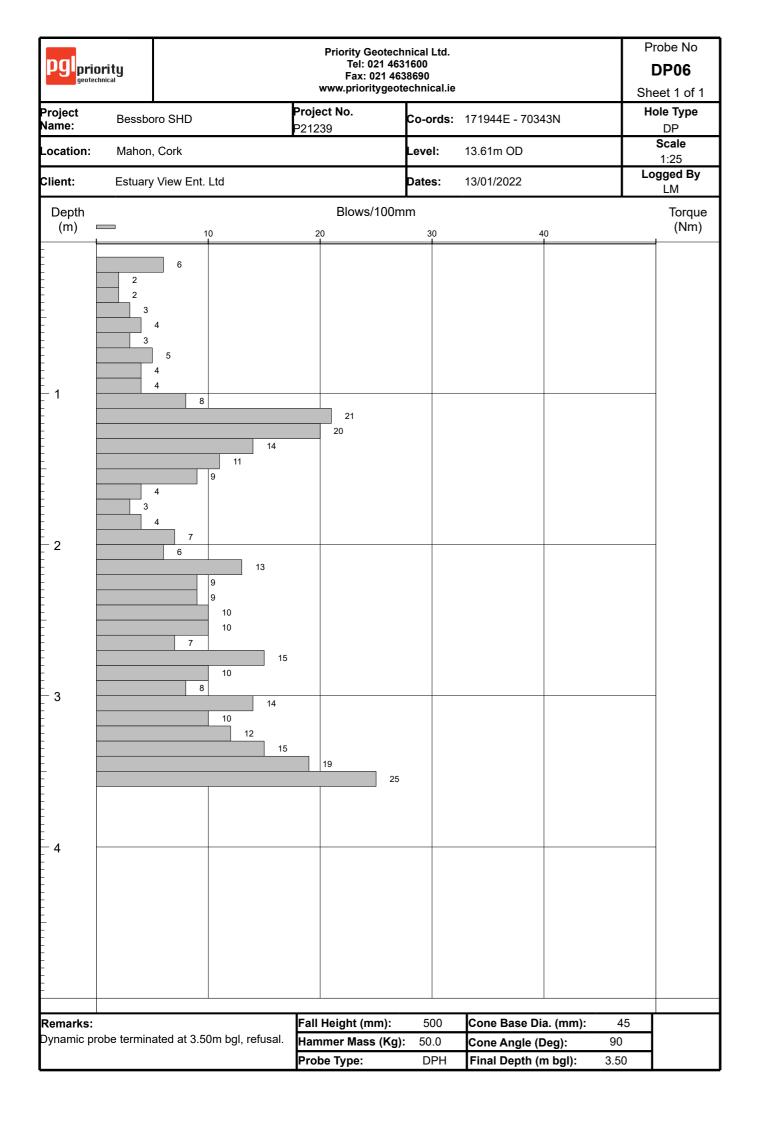

pgl _p	priority eotechnical				Priority Te Fa /ww.pr
Project Name:	Bessboro Sl	HD		Proje P212	ct No . 39
Locatior	n: Mahon, Co	ork			
Client:	Estuary Vie	ew Ent. Lto	ł		
Water Strike & Backfill	Samp	les & In Situ	ı Testing	Depth	Leve
Stri Bac	Depth (m)	Туре	Results	(m)	(m Ol
	0.50 - 1.45 0.50 - 1.45	B D		0.10	13.5
	1.50 - 2.50 1.50 - 2.50	B D		1.45	12.1
	2.50 - 3.50 2.50 - 3.50	B D			
×	3.50 - 4.50 3.50 - 4.50	B D			
				4.60	9.0*
Stability: Plant:	14T track mach	nine			
Backfill:	Arisings. Trial pit termin				


G	eotechr	nical Ltd.	Trial Pit No				
: (: 021 4631600 TP06A						
		chnical.ie	Sheet 1 of 1				
		Co-ords :171945E - 70339N	Date				
		Level: 13.61m OD	12/01/2022	_			
		Dimensions (m):	Scale 1:25				
		Depth: -	Logged				
		4.60m BGL	OD	-			
)	Legend	Stratum Description					
		(TOPSOIL) Soft to firm, slightly sandy slightly g SILT with grass and rootlets.	ravelly	-			
		(MADE GROUND) Soft to firm, slightly sandy s	ightly	_			
		gravelly CLAY with low cobble content and was (pottery fragments, glass, plastics). Sand is fine	e to				
		coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.		-			
				-			
				-			
			1 -	-			
				-			
			(ith	_			
		Soft to firm, slightly sandy slightly gravelly CLA low cobble content. Sand is fine to coarse. Grav	vel is	-			
		fine to coarse, sub-rounded to rounded. Cobble sub-rounded to rounded.	s are				
				_			
				1 1 1			
			2 -	_			
				-			
				-			
				-			
		े 2014 य					
				_			
		<u>्रि</u>	3 -	-			
				_			
				-			
				-			
				-			
		<u>्य</u> स		-			
			4	-			
				-			
				-			
		End of Pit at 4.600m		-			
			5 -				
ľ	sroundwa	ater: 3.10m: Trickle rate of flow					
L				-			

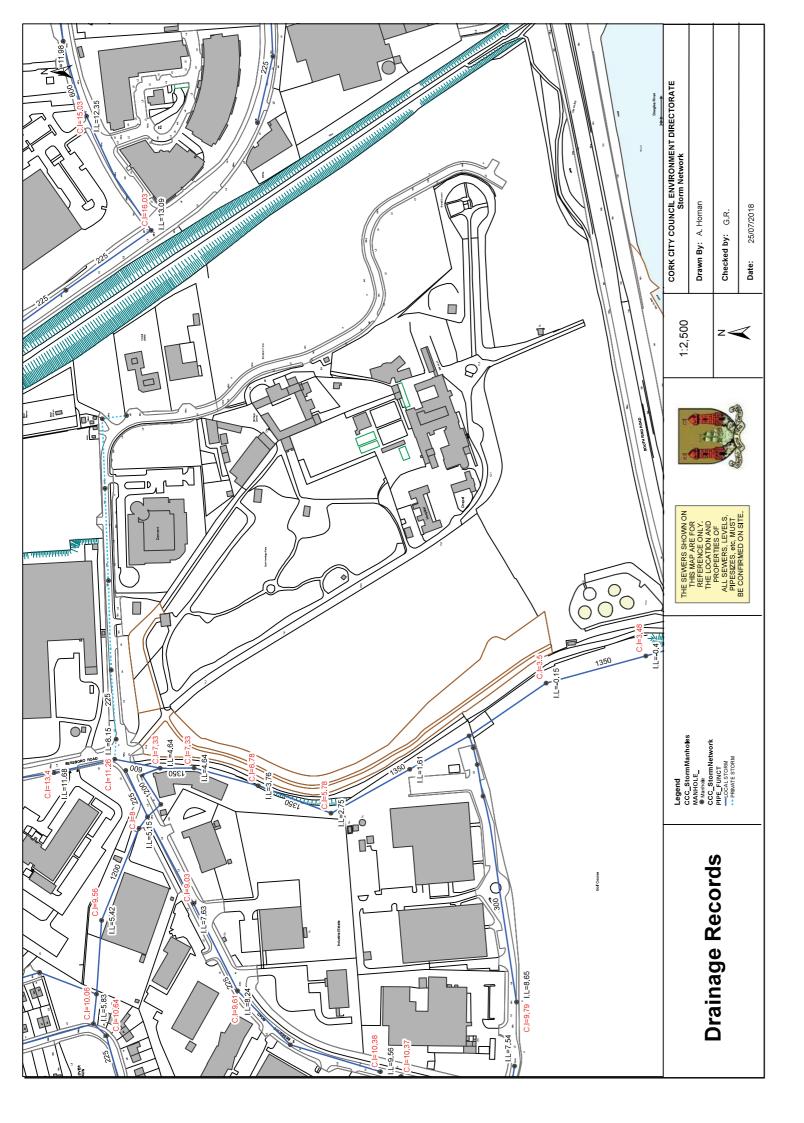



pgl _{prior}	rity _{Nical}		Tel: 02 Fax: 02	otechnical Ltd. 1 4631600 21 4638690 ygeotechnical.ie			Probe No DP01 Sheet 1 of 1
Project Name:	Bessboro SHD		Project No. P21239	Co-ords:	171822E - 70465	5N	Hole Type DP
ocation:	Mahon, Cork			Level:	16.54m OD		Scale 1:25
Client:	Estuary View Ent.	Ltd		Dates:	13/01/2022		Logged By LM
Depth			Blows/1	100mm			Torque (Nm)
(m) =		10	20	30	40		
- 1	2 1 2 2 5 8 4 2 1 1 1 2 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2						
- 3	2 4 7	15 11 1 15 15	6] 18 17	25			
- 4 -							
Remarks:			Fall Height (mr	m): 500	Cone Base Dia	. (mm): 45	
	be terminated at 3.7	0m bgl, refusal.	Hammer Mass	(Kg): 50.0	Cone Angle (De	eg): 90	
			Probe Type:	DPH	Final Depth (m	bgl): 3.70	

				-	
021 463 021 463	8690				obe No 0 P02
ritygeote	echnical.ie			She	eet 2 of 2
	Co-ords:	171742E - 7039	171742E - 70393N		
	Level:	12.93m OD			Scale 1:25
	Dates:	13/01/2022		Lo	gged By LM
s/100m	m				Torque
	30	4	0		(Nm)
25					
mm):	500	Cone Base Di	a. (mm):	45	
ss (Kg):		Cone Angle (
	DPH	Final Depth (r		0	



				1	
Geotechi 021 463	nical Ltd.				obe No
021 463	8690			[DP04
ritygeote	echnical.ie				et 1 of 2
	Co-ords:	172028E - 7036	4N	Ho	DP
		12.40			Scale
	Level:	12.40m OD			1:25
	Dates:	13/01/2022			gged By LM
s/100m	m				Torque
	30	40)		(Nm)
mm):	500	Cone Base Dia	. (mm):	45	
ss (Kg):		Cone Angle (D			
	DPH	Final Depth (m		00	


pgl priol	rity		Tel: 02 Fax: 02	otechnical Ltd. 1 4631600 1 4638690 geotechnical.ie		Probe No DP04 Sheet 2 of 2
Project Name:	Bessboro	SHD	Project No. P21239	Co-ords:	172028E - 70364N	Hole Type DP
Location:	Mahon, C	Cork		Level:	12.40m OD	Scale 1:25
Client:	Estuary V	iew Ent. Ltd		Dates:	13/01/2022	Logged By LM
Depth (m) =			Blows/1	00mm		Torque (Nm)
-		10	20	30 25	40	
6						
7 -						
8 -						
9 -						
Remarks:	he terminate	ed at 5.00m bgl, refusal.	Fall Height (mn		Cone Base Dia. (mm):	45
		a a o.oom by, reiusal.	Hammer Mass Probe Type:	(Kg): 50.0 DPH	Cone Angle (Deg): Final Depth (m bgl):	90 5.00

Project Name: Bessboro SHD Project No. P21239 Co-ords: 172034E - 70305N H Location: Mahon, Cork Level: 12.21m OD 12.21m OD	Probe No DP05 Sheet 1 of 1		Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie				pgl _{priority}		
Silent: Estuary View Ent. Ltd Pates: 14/01/2022 Ltd Depth 10 20 30 40 1 5 5 10 10 2 6 7 5 10 5 10 12 1 10 3 5 6 7 10 3 7 5 10 10 4 10 20 22 10 3 7 5 10 10 3 7 20 22 3 7 5 10 10 10 20 22 3 7 20 22 3 7 20 22 3 7 20 22 3 7 20 21	Hole Type DP	5N	172034E - 7030	Co-ords:			Bessboro	Project Name:	
Depth Blows/100mm (m) 10 20 30 40 1 5 5 2 2 9 12 1 4 4 2 2 9 12 1 4 4 4 4 3 5 5 5 1 0 6 7 5 5 5 1 0 7 5 7 5 5 1 0 7 5 7 5 5 1 0 7 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Scale 1:25		12.21m OD	Level:		Cork	Mahon, Co	ocation:	
(m) -10 20 30 40 1 5 5 4 4 4 4 4 4 4 4 4 4	Logged By LM		14/01/2022	Dates:		View Ent. Ltd	Estuary Vi	Client:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Torque (Nm)								
					20 22	5 4 9 12 5 4 4 4 5 6 7 5 6 7 5 10 8 11 12 16		2	
Fall Height (mm): 500 Cone Base Dia. (mm): 45 Oynamic probe terminated at 3.00m bgl, refusal. Hammer Mass (Kg): 50.0 Cone Angle (Deg): 90							he terminet-		

CORK CITY COUNCIL - EXISTING STORMWATER NETWORK

HR WALLINGFORD - GREENFIELD RUNOFF ESTIMATION

Greenfield runoff rate

estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Diarmuid O'Brien		Site Details		
Site name:	Phase 1 - Bessboro SHD		Latitude:	51.88489° N	
Site location:	Bessboro, Blackrock, Cork.		Longitude:	8.40755° W	
in line with Environme	of the greenfield runoff rates that are used ent Agency guidance "Rainfall runoff mana	gement for developments",	Reference:	1191625915	
SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.					

Runoff estimation approach IH124

Site characteristics					Notes	
Total site area (ha): 1.	1.53					(1) Is Q _{BAF}
Methodology						
Q _{BAR} estimation metho	d: Calcu	ulate fi	rom SPR a	and SAAR		When Q _E
SPR estimation method	: Calcu	ulate fi	rom SOIL	type		at 2.0 l/s/
Soil characteristics	Defau	llt	Edite	ed		
SOIL type:	4		4			(2) Are flow
HOST class:	N/A		N/A			
SPR/SPRHOST:	0.47		0.47			Where flo usually se
Hydrological charac	teristics	C)efault	Edite	ed	materials where the
SAAR (mm):		1106		1106		drainage
Hydrological region:		13		13		(3) Is SPR
Growth curve factor 1 year:		0.8	5	0.85		
Growth curve factor 30 years:		1.65		1.65		Where gr
Growth curve factor 100 years:		1.95		1.95		soakawa preferred
Growth curve factor 200 years:		2.1	.15 2.15			

(1) Is Q_{BAR} < 2.0 l/s/ha?

/hen Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set : 2.0 l/s/ha.

Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is sually set at 5.0 l/s if blockage from vegetation and other naterials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate rainage elements.

3) Is SPR/SPRHOST ≤ 0.3 ?

/here groundwater levels are low enough the use of bakaways to avoid discharge offsite would normally be referred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	12.61	12.61
1 in 1 year (l/s):	10.72	10.72
1 in 30 years (l/s):	20.81	20.81
1 in 100 year (l/s):	24.6	24.6
1 in 200 years (l/s):	27.12	27.12

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

Ok, I agree

More

By clicking the Accept button, you agree to us doing so.

CORK CITY COUNCIL CORRESPONDENCE

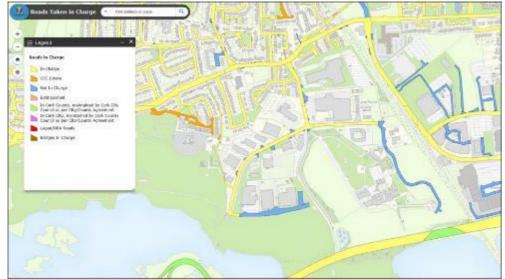


Figure 3. – Status of Taken in Charge / Not in Charge Roads in the Vicinity of the Bessboro SHD Site.

3.4.14.2 Sustainable Urban Drainage Systems (SuDS) & Stormwater:

The report of the Senior Executive Engineer from the Drainage Section states that:

"I note the applicant's proposal to use Q100 instead of Qbar as the greenfield run-off rate. This is acceptable, considering the proximity of the development to outfall to the estuary and the size of the existing outfall pipe at 1350mm. This approach is in line with that taken on other previously proposed developments within the Bessboro site. I have checked the Q100 estimate against my own estimate from the uksuds.com website and I am satisfied it is accurate.

I am pleased to see interception storage being provided for up to 5mm of rainfall...this will have a positive impact on downstream water quality, avoiding the "first flush" which would otherwise be reliant solely on an oil interceptor.

I am pleased to see the number of SuDS measures proposed and would request that design / drawing details are submitted as part of the application for each of the measures proposed. I would request in particular details of how the bio-retention areas are intention to function.

I note from Section 4.3.4 of the Infrastructure Report that it is proposed to discharge surface water from the car park via an interceptor to the storm line (as shown on drawing 21207-JBB-PH1-XX-DR-C-04001). However, based on a review of drawing SB-2020-107-404 it is apparent that this is effectively a "basement carpark", insofar as it is enclosed. As such, in accordance with Section 3.18 of the Greater Dublin Regional Code of Practice for Drainage Works, all drainage from basement areas shall be pumped to ground level prior to discharging by gravity to the public foul sewerage system. Basement car parks must be discharged to the foul system via a petrol/oil interceptor. Access to basement car parks shall be designed such that surface water run-off from the surrounding paved areas cannot flow down the ramp".

3.4.14.3 Flooding:

The report of the Senior Executive Engineer from the Drainage Section states that "*I am satisfied with the Applicant's conclusion that the site is located in Flood Zone 'C' and hence, does not merit further assessment*".

SURFACE WATER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	1

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model	- Scotland and Ireland
Return Period (years)	2 PIMP (%) 100
M5-60 (mm) 18.80	0 Add Flow / Climate Change (%) 0
Ratio R 0.25	0 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) 5	0 Maximum Backdrop Height (m) 4.000
Maximum Time of Concentration (mins) 3	0 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (l/s/ha) 0.00	0 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.75	0 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	51.087	0.511	100.0	0.115	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.000 S2.001	30.932 31.021			0.175 0.039	4.00 0.00		0.600	0 0		Pipe/Conduit Pipe/Conduit	0 5
S1.002	36.395 9.219 34.183	0.061		0.120 0.010 0.045	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	9 9 9
S3.000 S3.001 S3.002		0.200	55.9 198.0 162.9	0.042 0.065 0.118	4.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0 0
	14.780 35.342 13.916 5.732	0.832	46.0 42.5 54.1 56.2	0.020 0.038 0.000 0.000	0.00 0.00 0.00 0.00	3.9 0.0	0.600 0.600 0.600 0.600	0 0 0	300 300	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	9 9 9

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.000	50.00	4.65	12.830	0.115	0.0	0.0	0.0	1.31	52.0	15.6
S2.000 S2.001	50.00 50.00		12.670 12.361	0.175 0.214	0.0	0.0	0.0	1.31 1.29	52.0 51.3	23.7 29.0
S1.001 S1.002 S1.003	50.00 50.00 50.00	5.39	11.984 11.741 11.680	0.449 0.459 0.505	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	1.28	90.6 90.2 143.4	60.8 62.2 68.3
s3.000 s3.001	50.00	4.30	12.370 11.800	0.042	0.0	0.0	0.0	1.75	69.7 36.8	5.7 14.5
s3.001	49.96		11.600	0.225	0.0	0.0	0.0	1.02	40.6	30.5
S1.004 S1.005	49.63 48.89	6.46	11.113 10.792	0.750 0.788	0.0 3.9	0.0	0.0	2.42		108.2
S1.006 S1.007	48.57 48.44	6.57 6.61	9.960 9.703	0.788 0.788	3.9 3.9	0.0	0.0		151.4 148.6	

©1982-2020 Innovyze

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	
Ne	etwork Design Table for Storm	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.008	44.748	0.050	895.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	ď
S4.000	16.604	0.166	100.0	0.026	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S4.001	19.498	0.134	145.5	0.017	0.00	0.0	0.600	0	225	Pipe/Conduit	ெ
S4.002	10.100	0.300	33.7	0.015	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S4.003	16.086	0.100	160.9	0.010	0.00	0.0	0.600	0	225	Pipe/Conduit	- Ē
S4.004	33.680	1.020	33.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- T
S4.005	2.186	0.124	17.6	0.000	0.00	3.8	0.600	0	225	Pipe/Conduit	ð
S1.009	34.516	0.181	190.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ெ
S1.010	17.091	0.087	196.4	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- T
S1.011	57.377	0.284	202.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.012	41.156	0.206	199.8	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	- T
S1.013	36.345	0.182	199.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.014	63.431	1.321	48.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.015	29.911	0.602	49.7	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
S1.016	94.491	3.780	25.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.008	45.72	7.62	9.376	0.788	3.9	0.0	0.0	0.74	160.3	108.2
S4.000	50.00	4.21	11.170	0.026	0.0	0.0	0.0	1.31	52.0	3.6
S4.001	50.00	4.51	11.004	0.043	0.0	0.0	0.0	1.08	43.0	5.9
S4.002	50.00	4.59	10.870	0.058	0.0	0.0	0.0	2.26	90.0	7.8
S4.003	50.00	4.85	10.570	0.068	0.0	0.0	0.0	1.03	40.9	9.2
S4.004	50.00	5.09	10.470	0.068	0.0	0.0	0.0	2.28	90.8	9.2
S4.005	50.00	5.10	9.450	0.068	3.8	0.0	0.0	3.13	124.5	13.0
S1.009	50.00	4.61	9.326	0.000	24.6	0.0	0.0	0.94	37.5	24.6
S1.010	50.00	4.92	9.145	0.000	24.6	0.0	0.0	0.93	36.9	24.6
S1.011	50.00	5.96	9.058	0.000	24.6	0.0	0.0	0.92	36.4	24.6
S1.012	48.18	6.70	8.774	0.000	24.6	0.0	0.0	0.92	36.6	24.6
S1.013	46.38	7.36	8.568	0.000	24.6	0.0	0.0	0.92	36.6	24.6
S1.014	44.99	7.92	8.386	0.000	24.6	0.0	0.0	1.89	75.3	24.6
S1.015	44.35	8.19	7.065	0.000	24.6	0.0	0.0	1.86	74.0	24.6
S1.016	43.02	8.79	6.463	0.000	24.6	0.0	0.0	2.63	104.5	24.6

		Outfall Name	c.	Level (m)	Ι.		Min Level (m)			
	S1.016	S.A29		4.390		2.683	0.000	0	0	

Network Results Table

Free Flowing Outfall Details for Storm

J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	1

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S.A21, DS/PN: S1.009, Volume (m³): 14.1

Unit Reference	MD-SHE-0208-2460-1680-2460
Design Head (m)	1.680
Design Flow (l/s)	24.6
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	208
Invert Level (m)	9.326
Minimum Outlet Pipe Diameter (mm)	225
Suggested Manhole Diameter (mm)	1800
Control Points Head (m) Flow (1/s)	Control Points Head (m) Flow (1/s)
Design Point (Calculated) 1.680 24.6	Kick-Flo® 1.086 20.0
Flush-Flo™ 0.497 24.6 Mea	an Flow over Head Range - 21.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)

0.100	7.1	0.800	23.6	2.000	26.7	4.000	37.3	7.000	48.9
0.200	20.0	1.000	21.7	2.200	28.0	4.500	39.5	7.500	50.5
0.300	23.5	1.200	20.9	2.400	29.2	5.000	41.5	8.000	52.1
0.400	24.4	1.400	22.5	2.600	30.3	5.500	43.5	8.500	53.7
0.500	24.6	1.600	24.0	3.000	32.5	6.000	45.4	9.000	55.2
0.600	24.4	1.800	25.4	3.500	35.0	6.500	47.2	9.500	56.7

J.B. Barry & Partners Ltd					
Classon House	20217 -				
Dundrum Business Park	(The Mea				
Dublin 14	Storm Se				
Date 18/02/2022 17:33	Designed				
File 21207-JBB-PH1-XX-M3-	Checked				
Innovyze	Network				

Storage Structur

Cellular Storage Manhole: S.A21, DS/PN: S1.009

Invert Level (m) 9.326 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²) In	nf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) Inf	. Area (m²)
0.000	284.0	0.0	0.900	284.0	0.0	1.681	0.0	0.0
0.100	284.0	0.0	1.000	284.0	0.0	1.900	0.0	0.0
0.200	284.0	0.0	1.100	284.0	0.0	2.000	0.0	0.0
0.300	284.0	0.0	1.200	284.0	0.0	2.100	0.0	0.0
0.400	284.0	0.0	1.300	284.0	0.0	2.200	0.0	0.0
0.500	284.0	0.0	1.400	284.0	0.0	2.300	0.0	0.0
0.600	284.0	0.0	1.500	284.0	0.0	2.400	0.0	0.0
0.700	284.0	0.0	1.600	284.0	0.0	2.500	0.0	0.0
0 900	284 0	0 0	1 690	294 0	0 0			

pth (m)	Area (m²)	Inf.	Area	(m²)	Depth	(m)	Area (m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	284.0			0.0	ο.	900	284.0			0.0	1.	.681		0.0			0.0
0.100	284.0			0.0	1.	000	284.0			0.0	1.	.900		0.0			0.0
0.200	284.0			0.0	1.	100	284.0			0.0	2.	.000		0.0			0.0
0.300	284.0			0.0	1.	200	284.0			0.0	2.	.100		0.0			0.0
0.400	284.0			0.0	1.	300	284.0			0.0	2.	.200		0.0			0.0
0.500	284.0			0.0	1.	400	284.0			0.0	2.	.300		0.0			0.0
0.600	284.0			0.0	1.	500	284.0			0.0	2.	.400		0.0			0.0
0.700	284.0			0.0	1.	600	284.0			0.0	2.	.500		0.0			0.0
0.800	284.0			0.0	1.	680	284.0			0.0							

	Page 4
Bessborough SHD	
adows)	
ewer	Micro
d by DOB	
by	Drainage
2020.1	
ares for Storm	

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Mirro
Date 18/02/2022 17:33	Designed by DOB	inicio
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

> Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter	
Duration(s) (mins)	15,	30, 60, 120, 180, 240, 360, 480, 600, 720, 960,	
		1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080	
rn Period(s) (years)		1, 30, 100	
Climate Change (%)		10, 10, 10	

Return Pe Climate Change (%)

PN	US/MH Name	s	torm		Climate Change	First Surch		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
S1.000	S.A1	15	Winter	1	+10%	100/15	Summer				12.920	-0.135
S2.000	S.A2	15	Winter	1	+10%	30/15	Summer				12.786	-0.109
S2.001	S.A3	15	Winter	1	+10%	30/15	Summer				12.491	-0.095
S1.001	S.A4	15	Winter	1	+10%	30/15	Summer				12.174	-0.110
S1.002	S.A5	15	Winter	1	+10%	30/15	Summer				11.978	-0.063
S1.003	S.A6	15	Winter	1	+10%	30/15	Summer				11.829	-0.151
S3.000	S.A7	15	Winter	1	+10%	100/15	Summer				12.416	-0.179
S3.001	S.A8	15	Winter	1	+10%	30/15	Summer				11.898	-0.127
S3.002	S.A9	15	Winter	1	+10%	30/15	Summer				11.736	-0.089
S1.004	S.A10	15	Winter	1	+10%	30/15	Summer				11.294	-0.119
S1.005	S.A11	15	Winter	1	+10%	30/15	Summer				10.967	-0.125
S1.006	S.A12	15	Winter	1	+10%	30/15	Summer				10.206	-0.054
S1.007	S.A13	15	Winter	1	+10%	1/15	Summer				10.042	0.039
S1.008	S.A14	15	Winter	1	+10%	30/60	Summer				9.702	-0.199
S4.000	S.A15	15	Summer	1	+10%						11.214	-0.181
S4.001	S.A16		Winter	1	+10%						11.062	-0.167
S4.002	S.A17	15	Winter	1	+10%						10.918	-0.177
S4.003	S.A18	15	Winter	1	+10%						10.644	-0.151
S4.004	S.A19	15	Winter	1	+10%						10.518	-0.177
S4.005	S.A20	180	Winter	1	+10%	30/15	Summer				9.675	0.000
S1.009	S.A21	180	Winter	1	+10%	1/30	Winter				9.673	0.122
S1.010	S.A22	180	Winter	1	+10%						9.286	-0.084
S1.011	S.A23	180	Winter	1	+10%						9.193	-0.090
S1.012	S.A24	180	Winter	1	+10%						8.909	-0.090
S1.013	S.A25	180	Winter	1	+10%						8.704	-0.089
S1.014	S.A26	180	Winter	1	+10%						8.473	-0.138
S1.015	S.A27	180	Winter	1	+10%						7.155	-0.135
S1.016	S.A28	180	Winter	1	+10%						6.535	-0.152

J.B. Barry & Partners Ltd	Page 6		
Classon House	20217 - Bessborough SHD		
Dundrum Business Park	(The Meadows)		
Dublin 14	Storm Sewer	Micro	
Date 18/02/2022 17:33	Designed by DOB		
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage	
Innovyze	Network 2020.1		

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			1
	US/MH	Volume	Flow /	Overflow	
PN	Name	(m³)	Cap.	(1/s)	
s1.000	S.A1	0.000	0.34		
S2.000	S.A2	0.000	0.52		
S2.001	S.A3	0.000	0.62		
S1.001	S.A4	0.000	0.71		
S1.002	S.A5	0.000	0.97		
S1.003	S.A6	0.000	0.49		
S3.000	S.A7	0.000	0.09		
S3.001	S.A8	0.000	0.38		
S3.002	S.A9	0.000	0.65		
S1.004	S.A10	0.000	0.67		
S1.005	S.A11	0.000	0.63		
S1.006	S.A12	0.000	0.79		
S1.007	S.A13	0.000	1.24		
S1.008	S.A14	0.000	0.69		
S4.000	S.A15	0.000	0.08		
S4.001	S.A16	0.000	0.15		
S4.002	S.A17	0.000	0.10		
S4.003	S.A18	0.000	0.24		
S4.004	S.A19	0.000	0.10		
S4.005	S.A20	0.000	0.13		
S1.009	S.A21	0.000	0.66		
S1.010	S.A22	0.000	0.71		
S1.011	S.A23	0.000	0.67		
S1.012	S.A24	0.000	0.67		
S1.013	S.A25	0.000	0.68		
S1.014		0.000	0.32		
S1.015		0.000	0.34		
S1.016	S.A28	0.000	0.23		

w	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
		16.9	OK	
		25.5	OK	
		29.6	OK	
		59.6	OK	
		60.1	OK	
		65.0	OK	
		6.2	OK	
		13.4	OK	
		25.6	OK	
		92.3	OK	
		99.5	OK	
		99.5	OK	
			SURCHARGED	
		97.0	OK	
		3.9	OK	
		5.8	OK	
		7.5	OK	
		8.6	OK	
		8.6	OK	
		6.6	OK	
	96		SURCHARGED	
		23.4	OK	
		23.4 23.4	OK	
		23.4	OK	

J.B. Barry & Partners Ltd	Page 7	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micco
Date 18/02/2022 17:33	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze	Network 2020.1	

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

> Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter
Duration(s) (mins)	15,	30, 60, 120, 180, 240, 360, 480, 600, 720, 960,
		1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080
rn Period(s) (years)		1, 30, 100
Climate Change (%)		10, 10, 10

Return Pe Climate Change (%)

					61 · · ·	<u> </u>	()			o 61		Surcharged
	US/MH				Climate	First			First (Z)		Level	Depth
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)	(m)
S1.000	S.A1	15	Winter	30	+10%	100/15	Summer				12.977	-0.078
S2.000	S.A2	15	Winter	30	+10%	30/15	Summer				13.300	0.405
S2.001	S.A3	15	Winter	30	+10%	30/15	Summer				13.052	0.466
S1.001	S.A4	15	Winter	30	+10%	30/15	Summer				12.735	0.451
S1.002	S.A5	15	Winter	30	+10%	30/15	Summer				12.415	0.374
S1.003	S.A6	15	Winter	30	+10%	30/15	Summer				12.274	0.294
S3.000	S.A7	15	Winter	30	+10%	100/15	Summer				12.448	-0.147
S3.001	S.A8	15	Winter	30	+10%	30/15	Summer				12.425	0.400
S3.002	S.A9	15	Winter	30	+10%	30/15	Summer				12.358	0.533
S1.004	S.A10	15	Winter	30	+10%	30/15	Summer				11.930	0.517
S1.005	S.A11	15	Winter	30	+10%	30/15	Summer				11.550	0.458
S1.006	S.A12	15	Winter	30	+10%	30/15	Summer				10.699	0.439
S1.007	S.A13	15	Winter	30	+10%	1/15	Summer				10.296	0.293
S1.008	S.A14	240	Winter	30	+10%	30/60	Summer				10.126	0.225
S4.000	S.A15	15	Winter	30	+10%						11.235	-0.160
S4.001	S.A16	15	Summer	30	+10%						11.098	-0.131
S4.002	S.A17	15	Winter	30	+10%						10.946	-0.149
S4.003	S.A18	15	Winter	30	+10%						10.697	-0.098
S4.004	S.A19	15	Winter	30	+10%						10.547	-0.148
S4.005	S.A20	240	Winter	30	+10%	30/15	Summer				10.122	0.447
S1.009	S.A21	240	Winter	30	+10%	1/30	Winter				10.120	0.569
S1.010	S.A22	480	Summer	30	+10%						9.290	-0.080
S1.011	S.A23	600	Winter	30	+10%						9.197	-0.086
S1.012	S.A24	480	Winter	30	+10%						8.914	-0.085
S1.013	S.A25	480	Winter	30	+10%						8.708	-0.085
S1.014	S.A26	360	Winter	30	+10%						8.476	-0.135
S1.015	S.A27	720	Summer	30	+10%						7.157	-0.133
S1.016	S.A28	720	Summer	30	+10%						6.537	-0.151

J.B. Barry & Partners Ltd	
Classon House	20217 - E
Dundrum Business Park	(The Meac
Dublin 14	Storm Sev
Date 18/02/2022 17:33	Designed
File 21207-JBB-PH1-XX-M3-	Checked b
Innovyze	Network 2

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			E
	US/MH	Volume	Flow /	Overflow	
PN	Name	(m ³)	Cap.	(1/s)	
			-		
S1.000	S.A1	0.000	0.74		
S2.000	S.A2	0.000	0.92		
S2.001	S.A3	0.000	1.08		
S1.001	S.A4	0.000	1.34		
S1.002	S.A5	0.000	1.74		
S1.003	S.A6	0.000	0.86		
S3.000	S.A7	0.000	0.21		
S3.001	S.A8	0.000	0.68		
S3.002	S.A9	0.000	1.25		
S1.004	S.A10	0.000	1.11		
S1.005	S.A11	0.000	1.01		
S1.006	S.A12	0.000	1.26		
S1.007	S.A13	0.000	1.96		
S1.008	S.A14	0.000	0.44		
S4.000	S.A15	0.000	0.19		
S4.001	S.A16	0.000	0.36		
S4.002	S.A17	0.000	0.25		
S4.003	S.A18	0.000	0.59		
S4.004	S.A19	0.000	0.25		
S4.005	S.A20	0.000	0.17		
S1.009	S.A21	0.000	0.69		
S1.010	S.A22	0.000	0.74		
S1.011	S.A23	0.000	0.70		
S1.012	S.A24	0.000	0.70		
S1.013	S.A25	0.000	0.71		
S1.014	S.A26	0.000	0.34		
S1.015	S.A27	0.000	0.35		
S1.016	S.A28	0.000	0.24		

	Page 8
Bessborough SHD	
adows)	
ewer	Micro
d by DOB	
by	Drainage
2020.1	

	Half Drain	Pipe		
wc	Time	- Flow		Level
	(mins)	(l/s)	Status	Exceeded
		36.9	OK	
			SURCHARGED	
		51.8	SURCHARGED	
		112.1	SURCHARGED	
		107.9	SURCHARGED	
		113.8	SURCHARGED	
		13.7	OK	
		23.9	SURCHARGED	
		49.1	SURCHARGED	
		152.3	SURCHARGED	
		158.9	SURCHARGED	
		157.4	SURCHARGED	
		157.0	SURCHARGED	
		62.3	SURCHARGED	
		8.7	OK	
		14.1	OK	
		18.8	OK	
		21.5	OK	
		21.7	OK	
		8.5	SURCHARGED	
	160	24.5	SURCHARGED	
		24.5	OK	

J.B. Barry & Partners Ltd		Page 9
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:33	Designed by DOB	
File 21207-JBB-PH1-XX-M3-	Checked by	Drainage
Innovyze		
-	Network 2020.1	(Rank 1) for Storm
-	of Critical Results by Maximum Level	(Rank 1) for Storm
100 year Return Period Summary		
<u>100 year Return Period Summary</u> Areal Reduction	of Critical Results by Maximum Level Simulation Criteria	Flow 0.000
<u>100 year Return Period Summary</u> Areal Reduction Hot Start Hot Start Lev	<u>Simulation Criteria</u> Factor 1.000 Additional Flow - % of Total (mins) 0 MADD Factor * 10m³/ha Sto el (mm) 0 Inlet Coeffice	Flow 0.000 prage 2.000 cient 0.800
<u>100 year Return Period Summary</u> Areal Reduction Hot Start Hot Start Lev Manhole Headloss Coeff (<u>Simulation Criteria</u> Factor 1.000 Additional Flow - % of Total (mins) 0 MADD Factor * 10m³/ha Sto el (mm) 0 Inlet Coeffice Global) 0.500 Flow per Person per Day (1/per/	Flow 0.000 prage 2.000 cient 0.800
<u>100 year Return Period Summary</u> Areal Reduction Hot Start Hot Start Lev	<u>Simulation Criteria</u> Factor 1.000 Additional Flow - % of Total (mins) 0 MADD Factor * 10m³/ha Sto el (mm) 0 Inlet Coeffice Global) 0.500 Flow per Person per Day (1/per/	Flow 0.000 prage 2.000 cient 0.800
<u>100 year Return Period Summary</u> Areal Reduction Hot Start Hot Start Lev Manhole Headloss Coeff (Foul Sewage per hectar	<u>Simulation Criteria</u> Factor 1.000 Additional Flow - % of Total (mins) 0 MADD Factor * 10m³/ha Sto el (mm) 0 Inlet Coeffice Global) 0.500 Flow per Person per Day (1/per/	Flow 0.000 prage 2.000 cient 0.800 (day) 0.000

Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter
Duration(s) (mins) 15	30, 60, 120, 180, 240, 360,	480, 600, 720, 960,
	1440, 2160, 2880, 4320, 5760,	, 7200, 8640, 10080
rn Period(s) (years)		1, 30, 100
Climate Change (%)		10, 10, 10

Return Per Climate Change (%)

PN	US/MH Name	St	torm		Climate Change	First Surch	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
S1.000	S.A1	15	Winter	100	+10%	100/15	Summer				13.660	0.605
S2.000	S.A2	15	Winter	100	+10%	30/15	Summer				14.089	1.194
S2.001	S.A3	15	Winter	100	+10%	30/15	Summer				13.863	1.277
S1.001	S.A4	15	Winter	100	+10%	30/15	Summer				13.532	1.248
S1.002	S.A5	15	Winter	100	+10%	30/15	Summer				13.151	1.110
S1.003	S.A6	15	Winter	100	+10%	30/15	Summer				12.968	0.988
S3.000	S.A7	15	Winter	100	+10%	100/15	Summer				13.183	0.588
S3.001	S.A8	15	Winter	100	+10%	30/15	Summer				13.163	1.138
S3.002	S.A9	15	Winter	100	+10%	30/15	Summer				13.093	1.268
S1.004	S.A10	15	Winter	100	+10%	30/15	Summer				12.514	1.101
S1.005	S.A11	15	Winter	100	+10%	30/15	Summer				12.024	0.932
S1.006	S.A12	15	Winter	100	+10%	30/15	Summer				10.946	0.686
S1.007	S.A13	240	Winter	100	+10%	1/15	Summer				10.461	0.458
S1.008	S.A14	240	Winter	100	+10%	30/60	Summer				10.455	0.554
S4.000	S.A15	15	Winter	100	+10%						11.245	-0.150
S4.001	S.A16	15	Summer	100	+10%						11.113	-0.116
S4.002	S.A17	15	Winter	100	+10%						10.958	-0.137
S4.003	S.A18	15	Winter	100	+10%						10.722	-0.073
S4.004	S.A19	15	Winter	100	+10%						10.560	-0.135
S4.005	S.A20	240	Winter	100	+10%	30/15	Summer				10.451	0.776
S1.009	S.A21	240	Winter	100	+10%	1/30	Winter				10.449	0.898
S1.010	S.A22	360	Summer	100	+10%						9.290	-0.080
S1.011	S.A23	720	Summer	100	+10%						9.197	-0.086
S1.012	S.A24	480	Winter	100	+10%						8.914	-0.085
S1.013	S.A25	600	Summer	100	+10%						8.708	-0.085
S1.014	S.A26	1440	Summer	100	+10%						8.476	-0.135
S1.015	S.A27	1440	Summer	100	+10%						7.157	-0.133
S1.016	S.A28	1440	Summer	100	+10%						6.537	-0.151

J.B. Barry & Partners Ltd	
Classon House	20217 - E
Dundrum Business Park	(The Mead
Dublin 14	Storm Sev
Date 18/02/2022 17:33	Designed
File 21207-JBB-PH1-XX-M3-	Checked k
Innovyze	Network 2

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			Ha
	US/MH	Volume	Flow /	Overflow	
PN	Name	(m ³)	Cap.	(1/s)	
	mane	()	oup.	(1)0)	
S1.000	S.A1	0.000	0.84		
S2.000	S.A2	0.000	1.02		
S2.001	S.A3	0.000	1.16		
S1.001	S.A4	0.000	1.43		
S1.002	S.A5	0.000	1.84		
S1.003	S.A6	0.000	0.91		
S3.000	S.A7	0.000	0.25		
S3.001	S.A8	0.000	0.69		
S3.002	S.A9	0.000	1.39		
S1.004	S.A10	0.000	1.25		
S1.005	S.A11	0.000	1.15		
S1.006	S.A12	0.000	1.43		
S1.007	S.A13	0.000	0.97		
S1.008	S.A14	0.000	0.54		
S4.000	S.A15	0.000	0.24		
S4.001	S.A16	0.000	0.47		
S4.002	S.A17	0.000	0.33		
S4.003	S.A18	0.000	0.77		
S4.004	S.A19	0.000	0.33		
S4.005	S.A20	0.000	0.20		
S1.009	S.A21	0.000	0.69		
S1.010	S.A22	0.000	0.74		
S1.011	S.A23	0.000	0.70		
S1.012	S.A24	0.000	0.70		
S1.013	S.A25	0.000	0.71		
S1.014	S.A26	0.000	0.34		
S1.015	S.A27	0.000	0.35		
S1.016	S.A28	0.000	0.24		

	Page 10
Bessborough SHD	
adows)	
ewer	Micro
d by DOB	
by	Drainage
2020.1	

.ow)	Half Drain Time (mins)	Flow	Status	Level Exceeded
		41.7	SURCHARGED	
		49.4	FLOOD RISK	
		55.7	FLOOD RISK	
		119.6	SURCHARGED	
		114.0	SURCHARGED	
		120.4	SURCHARGED	
		16.3	SURCHARGED	
		23.9	FLOOD RISK	
		54.8	FLOOD RISK	
		171.3	SURCHARGED	
		180.7	SURCHARGED	
		178.9	SURCHARGED	
		77.4	SURCHARGED	
			SURCHARGED	
		11.2	OK	
		18.3	OK	
		24.4	OK	
		27.8	OK	
		28.2	OK	
		9.7	SURCHARGED	
	188	24.5	SURCHARGED	
		24.5	OK	

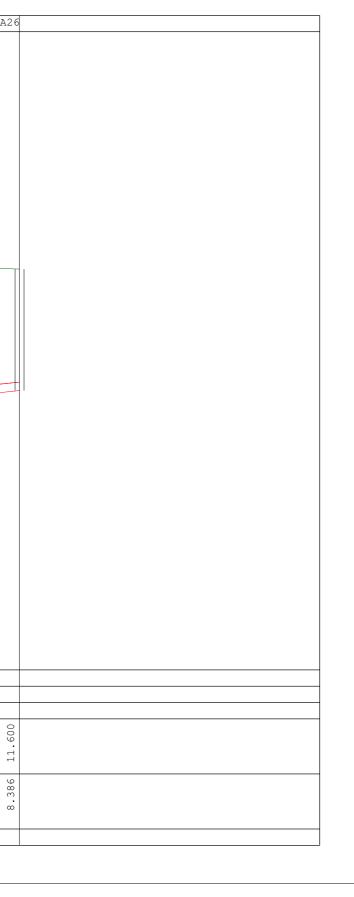
J.B. Barry & Partners Ltd					
Classon House	20217 - Bessborough SHD				
Dundrum Business Park	(The Meadows)				
Dublin 14	Storm Sewer	Micro			
Date 18/02/2022 17:34	Designed by DOB				
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage			
Innovyze	Network 2020.1	1			

MH Name	S.A11	S.A10	S.A6	S.A5	S.A	4
						2.001
			. 002			
			_			
Hor Scale 500						
Ver Scale 100						
Datum (m)4.000						
PN		S1.004	S1.003	S1.002	S1.001	S1
Dia (mm)		300	300	300	300	
Slope (1:X)		46.0	60.3	151.1	149.8	1
Cover Level (m)	12.840	13.400	200	14.600		
Cover rever (m)	. 8	. 4	14	4.6	4 (*	
	-		4, 1	-		4
	792	m d	ງ	1 20		6
Invert Level (m)		11. 11. 13.		11.680		12.319
	10			1 1 1		
Length (m)		14.780	34.183	9.219	36.395	51
		11.100	51.103	.215	50.333	

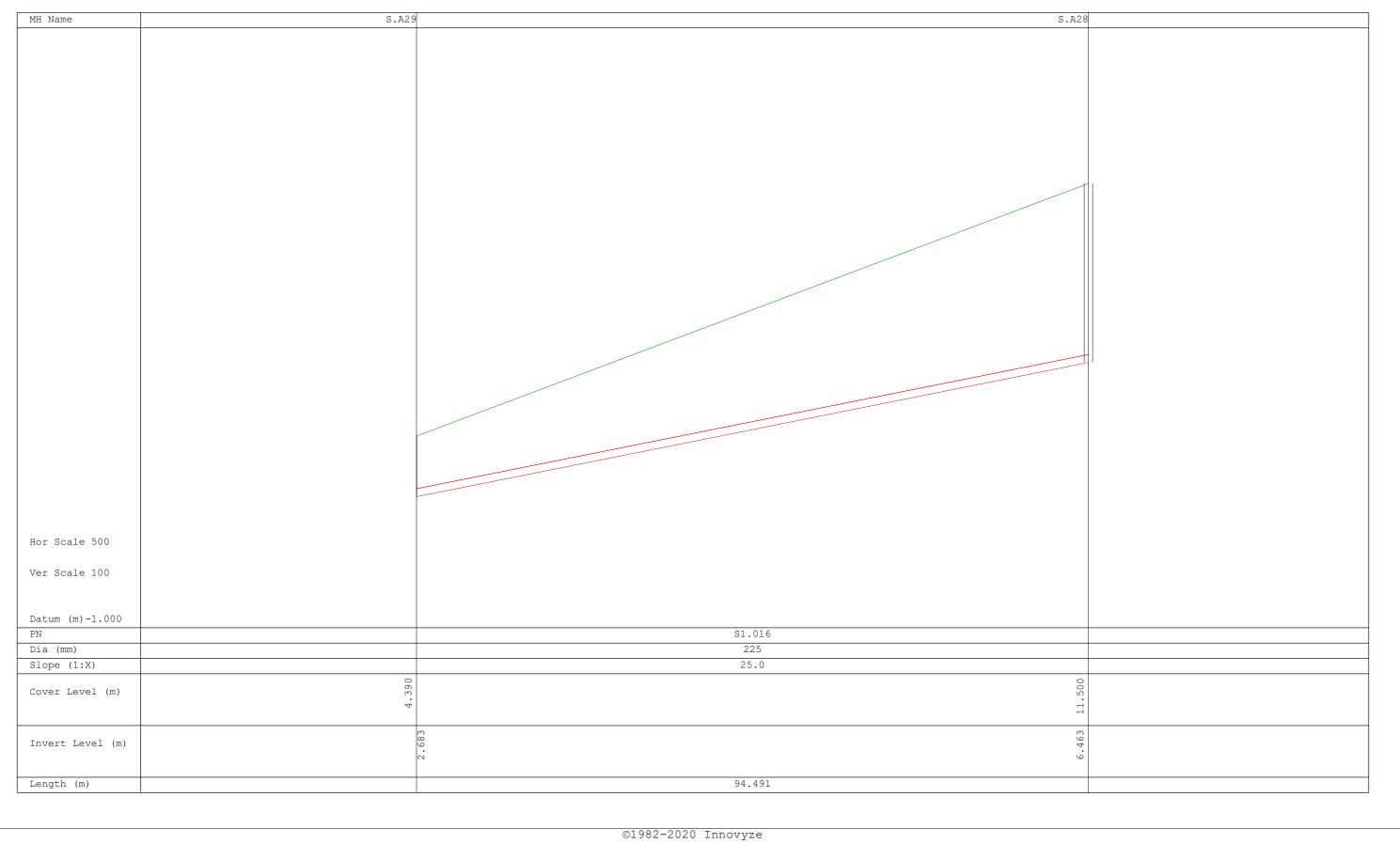
	1
S.A1	
· · · · · · · · · · · · · · · · · · ·	
\$1.000	
225	
100.0	
14.260	
14.	
0	
12 830	
E C	
51.087	

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	S.A23	S.A22	S.A21	S	A14 S.A13	3 S.A12
				4.005		
Hor Scale 500						
Ver Scale 100						
Datum (m)3.000						
PN		S1.010	S1.009	S1.008	S1.007	
Dia (mm)		225	225	525	300	300
Slope (1:X)		196.4	190.7	895.0	56.2	54.1
Cover Level (m)	11.900	006.	12.000		006.	.750
COVEL TEAST (III)	. 1				6 - 1 8 - 1 8 - 1	L. 1
	÷	H H	H			
	80	ע ני	<u>م</u>	0	3 11	m 0 0
Invert Level (m)	9.058	9.145 9.145	9.326	m	9.376 9.601 9.703	9.703 9.960
	σ	0 0	۵ ۵	თ	0 0 0	n n n
Length (m)		17.091	34.516	44.748	5.732	13.916
(m)		±/.07±	J1.J10	01.11	5.752	13.710


S.A11		
	1	
S1.005		
300		
42.5		
40		
12.840		
Ц Ц		
2 2		
10.792		
10		
35.342		
55.512		

J.B. Barry & Partners Ltd	Page 3	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Drainage
Innovyze	Network 2020.1	,


MH Name	S.A26	S.A25	S.A24	S.A23	
Hor Scale 500					
Ver Scale 100					
Datum (m)2.000		1.010	21, 010		
PN		1.013	\$1.012	\$1.011	
Dia (mm)		225	225	225	
Slope (1:X)		199.7	199.8	202.0	
	0 0 0	0	400	0	
Cover Level (m)	•	•	•	0 0	
	11.	H H	12.		
	O B M	8 8 . 5 6 6 8 . 8 . 5 6 8 .	8.774 8.774	0 0 0	
Invert Level (m)	1.	<u>ດ</u> 	<u> </u>	•	
	[∞]	ω ω	ω ∞	o l	
Longth (m)		6.345	41.156	57.377	
Length (m)	1 3	0.343	1.TTA	57.577	

J.B. Barry & Partners Ltd		Page 4
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Dialitacje
Innovyze	Network 2020.1	

MH Name	S.A28	S.A27	S.A2
	S.A28	S.A27	S.A2
Hor Scale 500 Ver Scale 100			
Datum (m)1.000			
PN		\$1.015	S1.014
Dia (mm)		225	225
Slope (1:X)		49.7	48.0
Cover Level (m)	11.500	12.100	11 600
Invert Level (m)		6.463 7.065	ບ 20 20 77 77 70 70 70 70 70 70 70 70 70 70 70
IIIVELC DEVEL (III)		9	8

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamacje
Innovyze	Network 2020.1	1

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamage
Innovyze	Network 2020.1	

MH Name	S.A4	S.A3	S.A2	
		1.000		
Hor Scale 500				
Ven Coole 100				
Ver Scale 100				
Datum (m) 5.000				
PN		S2.001	S2.000	
Dia (mm)		225	225	
Slope (1:X)		102.7	100.1	
	0			
Cover Level (m)	14.340	14.100	14.100	
	1 4	1	1 4	
Invert Level (m)		12.059	12.361	
			2	
Length (m)		31.021	30.932	

J.B. Barry & Partners Ltd		Page 7
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	S.A10	S.A.	S.A	.8
		1.003		
Hor Scale 500				
Ver Scale 100				
Datum (m)4.000				
PN		\$3.002	\$3.001	
Dia (mm)		225	225	
Slope (1:X)		162.9	198.0	
	13.400	13.300	13.230	
Cover Level (m)	.40	m i i i i i i i i i i i i i i i i i i i		•
	(*) (+)	(n) 	(n)) H
		α Ο	0 0	
Invert Level (m)		.188	0 80 80	80
				11.800
Tau ath (m)				
Length (m)		67.106	39.599	

S.A7	
\$3.000	
225	
55.9	
13 88 13	
13.	
12.370	
5	
31.863	

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Meadows)	
Dublin 14	Storm Sewer	Micro
Date 18/02/2022 17:34	Designed by DOB	Drainage
File 21207-JBB-PH1-XX-M3-C-04300_MicroDrainage_Analysis_(The_Meadows).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	S.#2.1A.2	0	S.A19	S.A18	S.A17	S.A16	S
	1.	.008					
		#					
Hor Scale 500							
nor beare soo							
Ver Scale 100							
Datum (m) 3.000							
PN	S4.(005	S4.004	S4.003	S4.002	S4.001	S4.000
Dia (mm)	22		225	225	225	225	225
Slope (1:X)	17.	.6	33.0	160.9	33.7	145.5	100.0
	0 0	,					
Cover Level (m)	000		06	00	. 300	. 60	
	12.000 12.000	1	11.900	12.000	12	12.600	
Invert Level (m)	ය) බව සත	9.450	470	47C 570	57C 370	876 304	004
	්. ක	5	10.470	10.470	10.570	10.870	•
Length (m)	2.1	86	33.680	16.086	10.100	19.498	16.604

S.A15	
1	
0	
60	
12.600	
11.170	
11	

Appendix 11

ATTENUATION ESTIMATES, STORAGE TANK SIZING

DESCRIPTIO	N:	21207-JBB-PH1	-XX-CA-C-044	01_Attenuat	ion_Assessm	ent_A_(Phase	e_1)
DATE:	17/02/2022		SHEET	100 Year +1	10%		L
Catchment Ch	naracteristics						
Site Area SAAR Soil Category M5-60 M5-2D r = M5-60 / M5	5-2d =	4		SOIL =		0.480 1106 0.47 16.3 76.6 0.21	mm mm
Permissible f	low (Q100) =	7.72	l/s				
Developent A	rea =	0.480	ha				
Developent Ai Impervious Ar	rea = ea =	0.480 0.480	ha ha	Average	Permshle	Elow to	Storage
Developent A	rea = ea = Rainfall	0.480 0.480 Including CCF	ha ha	Average	Permsble Flow	Flow to be stored	Storage Volume
Developent Ai Impervious Ar Rainfall	rea = ea =	0.480 0.480 Including CCF	ha ha Total volume				
Developent Ar Impervious Ar Rainfall duration	rea = ea = Rainfall depth (R100)	0.480 0.480 Including CCF (R100)*1.1	ha ha Total volume of runoff	flow	Flow	be stored	Volume
Developent Ar Impervious Ar Rainfall duration hrs	rea = ea = Rainfall depth (R100) mm	0.480 0.480 Including CCF (R100)*1.1 mm	ha ha Total volume of runoff m3	flow m3/s	Flow m3/s	be stored m3/s	Volume m3 78
Developent Ar Impervious Ar Rainfall duration hrs 0.25	rea = ea = Rainfall depth (R100) mm 16.1	0.480 0.480 Including CCF (R100)*1.1 mm 17.7	ha ha Total volume of runoff m3 85.01	flow m3/s 0.094	Flow m3/s <u>0.0077</u>	be stored m3/s 0.087	Volume m3
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5	rea = ea = Rainfall depth (R100) mm 16.1 21.6	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8	ha ha Total volume of runoff m3 85.01 114.05	flow m3/s 0.094 0.063	Flow m3/s 0.0077 0.0077	be stored m3/s 0.087 0.056	Volume m3 78 100
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5 1	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8	ha ha Total volume of runoff m3 85.01 114.05 152.59 204.34	flow m3/s 0.094 0.063 0.042 0.028	Flow m3/s 0.0077 0.0077 0.0077 0.0077	be stored m3/s 0.087 0.056 0.035 0.021	Volume m3 78 100 125
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5 1 2	rea = ea = depth (R100) mm 16.1 21.6 28.9 38.7 51.8	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6	ha ha Total volume of runoff m3 85.01 114.05 152.59 204.34 273.50	flow m3/s 0.094 0.063 0.042 0.028 0.019	Flow m3/s 0.0077 0.0077 0.0077 0.0077 0.0077	be stored m3/s 0.087 0.056 0.035 0.021 0.011	Volume m3 78 100 125 149 162
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4	rea = ea = depth (R100) mm 16.1 21.6 28.9 38.7	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0	ha ha Total volume of runoff m3 85.01 114.05 152.59 204.34 273.50 324.72	flow m3/s 0.094 0.063 0.042 0.028 0.019 0.015	Flow m3/s 0.0077 0.0077 0.0077 0.0077 0.0077	be stored m3/s 0.087 0.056 0.035 0.021 0.011 0.007	Volume m3 78 100 125 149
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4 6 12	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9 38.7 51.8 61.5 82.3	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7 90.5	ha ha Total volume of runoff m3 85.01 114.05 152.59 204.34 273.50 324.72 434.54	flow m3/s 0.094 0.063 0.042 0.028 0.019 0.015 0.010	Flow m3/s 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077	be stored m3/s 0.087 0.056 0.035 0.021 0.011 0.007 0.002	Volume m3 78 100 125 149 162 158 101
Developent Ai Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4 6	rea = ea = depth (R100) mm 16.1 21.6 28.9 38.7 51.8 61.5	0.480 0.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7	ha ha Total volume of runoff m3 85.01 114.05 152.59 204.34 273.50 324.72	flow m3/s 0.094 0.063 0.042 0.028 0.019 0.015	Flow m3/s 0.0077 0.0077 0.0077 0.0077 0.0077	be stored m3/s 0.087 0.056 0.035 0.021 0.011 0.007	Volume m3 78 100 125 149 162 158

CATCHMENT A

Total attenuation storage required (m3) =

162 m3

Sheet 1

DESCRIPTIO	N:	21207-JBB-PH1	-XX-CA-C-044				e_1)
DATE:	17/02/2022		SHEET	100 Year +′	10%		
Catchment Ch	naracteristics						
Site Area SAAR Soil Category M5-60 M5-2D r = M5-60 / M5		4		SOIL =		1.050 1106 0.47 16.3 76.6 0.21	mm mm
Permissible f	iow (Q100) =	16.88	l/s				
Developent Ar	rea =	1.050	ha				
Developent Ar Impervious Ar	rea = ea =	1.050 1.050	ha ha	Average	Dormobia	Flowte	Storage
Developent Ar Impervious Ar Rainfall	rea = ea = Rainfall	1.050 1.050 1.050	ha ha Total volume		Permsble	Flow to	Storage
Developent Ar Impervious Ar	rea = ea =	1.050 1.050 1.050	ha ha	Average flow m3/s	Permsble Flow m3/s	Flow to be stored m3/s	Storage Volume m3
Developent Ar Impervious Ar Rainfall duration	rea = ea = Rainfall depth (R100)	1.050 1.050 Including CCF (R100)*1.1	ha ha Total volume of runoff	flow	Flow	be stored	Volume
Developent Ar Impervious Ar Rainfall duration hrs	rea = ea = Rainfall depth (R100) mm	1.050 1.050 Including CCF (R100)*1.1 mm	ha ha Total volume of runoff m3 185.96	flow m3/s	Flow m3/s	be stored m3/s	Volume m3
Developent Ar Impervious Ar Rainfall duration hrs 0.25	rea = ea = Rainfall depth (R100) mm 16.1	1.050 1.050 Including CCF (R100)*1.1 mm 17.7	ha ha Total volume of runoff m3	flow m3/s 0.207	Flow m3/s 0.0169	be stored m3/s 0.190	Volume m3 171
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5	rea = ea = Rainfall depth (R100) mm 16.1 21.6	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8	ha ha Total volume of runoff m3 185.96 249.48	flow m3/s 0.207 0.139	Flow m3/s 0.0169 0.0169	be stored m3/s 0.190 0.122	Volume m3 171 219
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5 1	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8 31.8	ha ha Total volume of runoff m3 185.96 249.48 333.80 446.99	flow m3/s 0.207 0.139 0.093	Flow m3/s 0.0169 0.0169 0.0169 0.0169	be stored m3/s 0.190 0.122 0.076 0.045	Volume m3 171 219 273
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5 1 2	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9 38.7	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6	ha ha Total volume of runoff m3 185.96 249.48 333.80	flow m3/s 0.207 0.139 0.093 0.062	Flow m3/s 0.0169 0.0169 0.0169	be stored m3/s 0.190 0.122 0.076 0.045 0.025	Volume m3 171 219 273 325
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4	rea = ea = depth (R100) mm 16.1 21.6 28.9 38.7 51.8	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0	ha ha Total volume of runoff m3 185.96 249.48 333.80 446.99 598.29	flow m3/s 0.207 0.139 0.093 0.062 0.042	Flow m3/s 0.0169 0.0169 0.0169 0.0169 0.0169	be stored m3/s 0.190 0.122 0.076 0.045 0.025 0.016	Volume m3 171 219 273 325 355
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4 6	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9 38.7 51.8 61.5	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7	ha ha Total volume of runoff m3 185.96 249.48 333.80 446.99 598.29 710.33	flow m3/s 0.207 0.139 0.093 0.062 0.042 0.033	Flow m3/s 0.0169 0.0169 0.0169 0.0169 0.0169 0.0169	be stored m3/s 0.190 0.122 0.076 0.045 0.025 0.016 0.005	Volume m3 171 219 273 325 355 346
Developent Ar Impervious Ar Rainfall duration hrs 0.25 0.5 1 2 4 6 12	rea = ea = Rainfall depth (R100) mm 16.1 21.6 28.9 38.7 51.8 61.5 82.3	1.050 1.050 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7 90.5	ha ha Total volume of runoff m3 185.96 249.48 333.80 446.99 598.29 710.33 950.57	flow m3/s 0.207 0.139 0.093 0.062 0.042 0.033 0.022	Flow m3/s 0.0169 0.0169 0.0169 0.0169 0.0169 0.0169	be stored m3/s 0.190 0.122 0.076 0.045 0.025 0.016 0.005	Volume m3 171 219 273 325 355 346 221

CATCHMENT B

Total attenuation storage required (m3) =

Sheet 1

355 m3

DATE: 17-Feb-22 CREATED BY: DOB			
SYSTEM PARAMETERS Required Total Storage Stormtech chamber model Filtration Permeable Geo Number of Isolator Rows (IR)	°E	STORMTECH SYSTEM DETAIL StormTech Chamber Model Unit Width Unit Length Unit Height Min Conce Over System	MC3500 1.955 m 2.18 m 1.145 m 0.3 m
degrees)	 Minimum Requirement 	Min Cover Over Over Over Over Over Over Chamber Max Cover Over Chamber Chamber Internal Storage Vol in Excavation Header Pipe Internal Storage Vol in Excavation	2.4 m 3.11 m ³ 0.0 m ³
Stone Above Chambers Stone Below Chambers 0.26 In-between Row Spacing Additional Storage outside Excavation. E.g manholes, Header Pipe 0.	0.3 m 0.30 0.26 m 0.23 0.23 m 0.23 ST 0 m ³ 0.23 Vol	STONE AND EXCAVATION DETAIL Volume of Dig for System	597 m ³
HEADER PIPE No Is Header pipe required within excavation No Orientation of Header Pipe Parrallel to IR Diameter of Header Pipe 0.6 Length of Header Pipe 0	ΕΕ	Width at base Width at top Length at base Length at top Depth Of System Area of Dig at Base of System	6.93 m 8.89 m 43.16 m 45.13 m 1.71 m 299 m ²
Calcul	Adopted 3 ea 19 ea	Void Ratio Stone Requirement - m3 Stone Requirement - tonne	415 m ³ 681 tonne
oystem installed Storage Deptri (errective storage deptri) Tank overall installed Width at base 6.93 Tank overall installed Length at Base 43.16 Total Effective System Storage 359.7			

Appendix 12

CORK CITY COUNCIL - EXISTING WATERMAIN RECORDS

• Appendix 2-8 - Phase 2 'The Farm' Services Infrastructure Report prepared JB Barry and Partners Limited, Consultant Engineers

Client: Estuary View Enterprises 2020 Ltd.

Project:

Bessborough SHD Development

Report:

Services Infrastructure Report

Document Control Sheet

Client:	Estuary View Enterprises 2020 Ltd.		
Project Title:	Bessborough SHD Development		
Document Title:	Services Infrastructure Report		
File Name:	21207-JBB-PH2-XX-RP-C-01006		

Table of Contents	List of Tables	List of Figures	Pages of Text	Appendices
(incl. Y/N)	(incl. Y/N)	(incl. Y/N)	(No.)	(No.)
Y	Ν	Y	15	

Document Revision				Document Verification			
Issue Date (DD/MM/YY)	Revision Code	Suitability Code	Author (Initials)	Checker (Initials)	Reviewer As Per PMP (Initials)	Approver As Per PMP (Initials)	Peer Review (Initials or N/A)
30/07/2021	P01	S3	DOB	RS	TF	TF	N/A
21/02/2022	P02	S3	DOB	RS	TF	TF	N/A
21/03/2022	P03	S3	DOB	RS	TF	TF	N/A

Table of Contents

SECTION 1:	INTRODUCTION	. 1
1.1	Scope of the Report	. 1
1.2	Site Location	
1.3	Proposed Development Brief	. 1
SECTION 2:	WASTEWATER COLLECTION & DISPOSAL	. 3
2.1	Existing Wastewater Network	. 3
2.2	Pre-Connection Enquiry Stage	. 3
2.3	Design Acceptance Stage	. 3
2.4	Loading Calculations	. 4
SECTION 3:	STORMWATER COLLECTION & DISPOSAL	. 6
3.1	Existing Hydrology	. 6
3.2	Existing Stormwater Network	
3.3	Greenfield Runoff	. 8
3.4	Proposed Development Surface Water Management System	. 9
3.5	Conveyance of Surface Water Outflow to Final Discharge Location	13
SECTION 4:	WATER SUPPLY	14
4.1	Existing Watermain Network	14
4.2	Pre-Connection Enquiry Stage	14
4.3	Design Acceptance Stage	14
4.4	Loading Calculations	14

Appendices

Appendix 1: Proposed Site Layout Plan Appendix 2: Cork City Council - Existing Wastewater Network Appendix 3: As-Built Local Drainage Network
 Appendix 4: Irish Water - Confirmation of Feasibility & Statement of Design Acceptance Appendix 5: Foul Sewer – MicroDrainage Calculations Appendix 6: Priority Geotechnical Ltd. – Ground Investigations Appendix 7: Cork City Council – Existing Stormwater Network
Appendix 7: Cork City Council – Existing Stoffwater Network Appendix 8: HR Wallingford – Greenfield Runoff Estimation Appendix 9: Cork City Council Correspondence Appendix 10: Surface Water - MicroDrainage Calculations
Appendix 10: Sufface Water - MicroDrainage Calculations Appendix 11: Attenuation Estimates, Storage Tank Sizing Appendix 12: Cork City Council - Existing watermain Records

List of Figures

Figure 1-1: Location of Proposed Development	2
Figure 1-2: Phasing of Proposed Development	
Figure 3-1: Hydrological Features of the Area	
Figure 3-2: Soil Permeability	7
Figure 3-3: Groundwater Vulnerability	7
Figure 3-4: Surface Water Catchment Areas1	1

Table 2-1: Foul Sewer Size/Gradient Criteria	
Table 2-2: Foul Flow Calculations for Residential Development	
Table 2-3: Foul Flow Calculations for Commercial Development	
Table 3-1: HR Wallingford Design Value Outputs	8
Table 3-2: Surface Areas	10
Table 3-3: Summary of Attenuation Requirements and Proposals	12
Table 3-4: Pollution Hazard Indices for Different Land Uses	12
Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters	12
Table 4-1: Water Demand for Residential Development	15
Table 4-2: Water Demand for Commercial development	15
·	

SECTION 1: INTRODUCTION

1.1 Scope of the Report

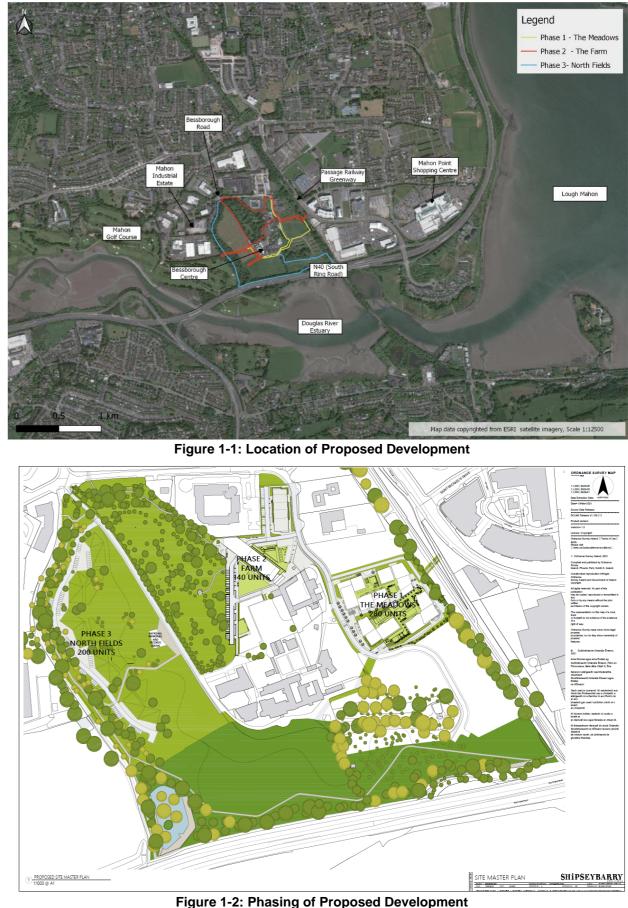
This Services Infrastructure Report outlines the proposed means of servicing the development with wastewater collection and disposal, stormwater management and disposal and water supply infrastructure. A Flood Risk Assessment is provided with this submission under a separate cover. Roads and traffic issues are dealt with separately by MHL Consulting Engineers on behalf of the Applicant and their submission should be consulted for such details.

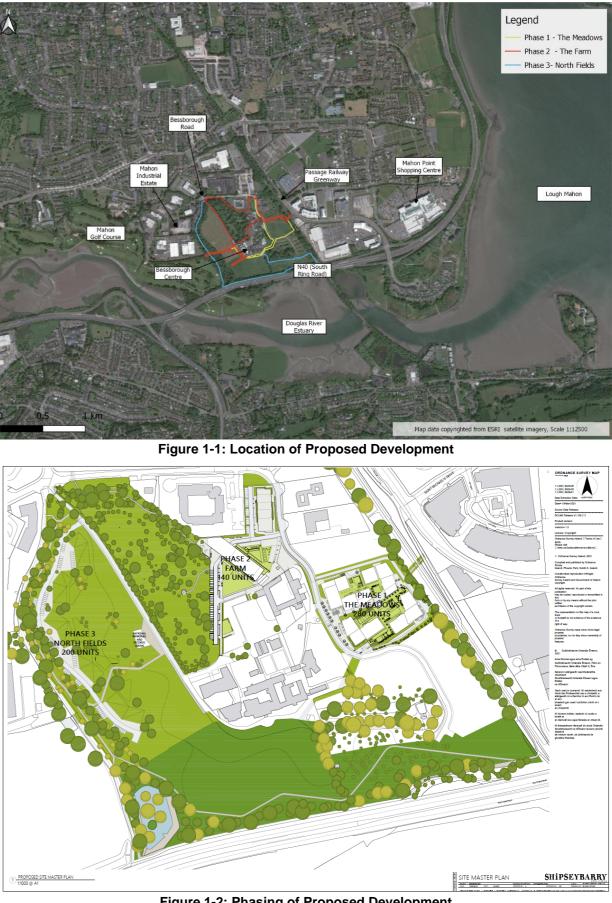
The following should be read in conjunction with the engineering drawings which illustrate the servicing proposals and with the submissions by other members of the Applicant's design team

Site Location 1.2

The proposed development is located at Phase 2 'The Farm', Bessborough, Ballinure, Blackrock, Cork, on a circa 5.13-hectare site, with a developable area of 4.28-hectares, see Figure 1.1. This proposed development will form Phase 2 of a larger development on a circa 16.59-hectare site, see Figure 1.2 for outline phasing proposals.

The South Ring Road (N40) is located approximately 250m from the southern boundary of the proposed development. The boundaries of the site are formed by the buildings, outbuildings, roads and open spaces of the overall Bessborough complex. The site slopes gently from north to south, with ground levels falling from approximately 18.00 m OD in the north-east of the site to 10.50 m OD in the south-west of the site.


1.3 Proposed Development Brief


This report is prepared in support of a Strategic Housing Development (SHD) planning application by Estuary View Enterprises 2020 Ltd.

The proposed development provides for the demolition of 10 no. existing agricultural buildings /sheds and log cabin residential structure and the construction of a residential development of 140 no. residential apartment units over 2 no. retained and repurposed farmyard buildings (A & B) with single storey extension and 3 no. new blocks of 3-5 storeys in height, with supporting resident amenity facilities, crèche, and all ancillary site development works. The proposed development includes 140 no. apartments to be provided as follows: Block C (9 no. 1-bedroom and 25 no. 2-bedroom over 3 storeys), Block D (34 no. 1-bedroom & 24 no. 2-bedroom over 3-4 storeys), Block E (27 no. 1-bedroom, 20 no. 2-bedroom & 1 no. 3-bedroom over 4-5 storeys). It is proposed to use retained Block A and Block B for resident amenities which include home workspace, library, lounge and function space.

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas, as well as new pedestrian access to Bessborough Estate to the north including upgrades to an existing pedestrian crossing on Bessboro Road.

The proposed development provides for outdoor amenity areas including publicly accessible parkland, landscaping, surface car parking, bicycle parking, bin stores, substation, public lighting, roof mounted solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road. See Appendix 1 for proposed site layout plan.

SECTION 2: WASTEWATER COLLECTION & DISPOSAL

Existing Wastewater Network 2.1

Cork City Council / Irish Water drainage records show that there is an existing 375/450mmØ foul sewer located to the west of the Phase 3 lands, outside of the boundary of the Applicant's lands, which runs north to south and discharges to the Bessborough Wastewater Pumping Station (WWPS). From the WWPS a 350mmØ rising main heads east crossing through the greenfield area in the ownership of the Applicant before turning north along the Passage West Greenway, see Appendix 2.

A feasibility study of the local area has revealed that there is an existing a 150mmØ foul sewer in the road adjacent to the eastern boundary of the Phase 2 site which runs north to south before turning in a westerly direction and connecting to the WWPS described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

2.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) issued a Confirmation of Feasibility (COF) stating that the site can be serviced by its wastewater infrastructure network. This COF is included in Appendix 4.

IW have advised that the proposed connection should be made directly to the WWPS, via a new inlet sewer. The WWPS is almost at design loading capacity. However, Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development and subsequent phases of this development. This upgrade project is scheduled to be completed by Q4 2022 and the proposed connection could be completed as soon as possibly practicable after this date.

2.3 Design Acceptance Stage

The proposed designs were progressed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

The wastewater collection within the development will be via a network of gravity sewers. The wastewater flows will be collected and conveyed in in a westerly direction, from the western boundary of the proposed development site and will connect directly to the WWPS.

The final connection from the western edge of the lands to the existing WWPS will be undertaken using directional-drilling techniques to ensure that the existing western boundary wall to the lands will remain undisturbed during construction.

The wastewater collection system is designed and will be constructed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure to ensure self-cleansing velocities will be achieved on all pipe runs. The pipes proposed as part of this design have been sized in accordance with Table 2.1, an extract from IW-CDS-5030-03 (Revision 2 2020).

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework. The gravity wastewater sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 5 of this report. The foul sewer layout plans are attached on Drawing No's. 21207-JBB-PH1-XX-DR-C-04000 & 04001.

No. of Dwellings	Pipe Diameter	Minimum Gradient
2 to 9	150mm (or 225mm)	1:60
10 to 20		1:150
21 to 210		1:200
211 to 250	225mm	1:150
250 to 330		1:100
331 to 450		1:300
451 to 565	300mm	1:200
566 to 655		1:150
656 to 830		1:100

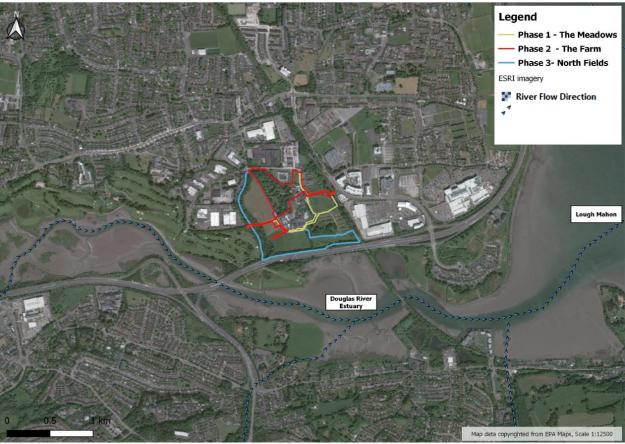
Table 2-1: Foul Sewer Size/Gradient Criteria

2.4 Loading Calculations

The design flows are calculated using the Irish Water Code of Practice for Wastewater Infrastructure Appendix B which is summarised in tables 2.2 and 2.3 below.

Use	No. of Units	Occupancy Rate	Population (P)	Loading (G) (I/day/person)	Daily Loading (PxG) (I/day)	Daily Loading (l/s)
Residential	140	2.7/ Unit	378	150	56,700	
		Infiltration (I) 10% (COP Apper	ndix B – Table 2.4)	5,670	
	Dry Weather Flow (PG +I) 62,370					
	Residential Peaking Factor (Pf _{Dom}) (COP Appendix B – Table 2.5) 6					
	Design Foul Flow [(Pf _{Dom} x PG + I] 345,870 4.003					
Misconnection Allowance (SW) 3% (COP Appendix B - Section 2.2.10) 0.338					0.338	
Design Flow 4.341						4.341

Table 2-2: Foul Flow Calculations for Residential Development



SECTION 3: STORMWATER COLLECTION & DISPOSAL

Existing Hydrology 3.1

The proposed development site does not contain any mapped watercourse. The nearest watercourse to the proposed Phase 2 development site is the Douglas Estuary which is located approximately 250m to the south of the site. The Douglas Estuary flows in an easterly direction and discharges to transitional water body Lough Mahon to the south of the site. The main hydrological features associated with the site are presented in Figure 3.1 below.

A geological desk study was conducted to gain an initial understanding of the existing ground conditions. Figure 3.2 is an extract from the Geological Survey of Ireland (GSI), where the soil permeability at the site is categorised as 'Moderate'. Further to this the groundwater vulnerability is categorised as 'High', see Figure 3.3. Groundwater vulnerability of an area is determined by the permeability and thickness of the subsoils overlying the groundwater, and the type of recharge sources (diffuse or point source). Therefore, areas where the infiltrating water and contaminants move faster from land to groundwater with high permeability are more vulnerable. Both sources of information would suggest that the site should have reasonable rates of permeability.

A ground investigation was undertaken by Priority Geotechnical Ltd. in January 2022 to establish subsurface conditions at the proposed project site. An infiltration test was conducted in one of the boreholes (BH03), see Appendix 6, which resulted in an infiltration rate of 1.12x10⁻³ m/s. An infiltration test was also conducted in one of the boreholes (BH05), on the Phase 1 site which saw no drop in water level after 60 minutes. Due to the inconsistency of results, we have conservatively assumed there will be no reduction in runoff volumes applied for the various SuDS measures. However, it has been assumed that the first flush, 5mm of rainfall

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Loading (G) (I/day/person)	Daily Loading (PxG) (I/day)	Daily Loading (l/s)
Creche	242	31*	31	90	2,790	
			3	50	150	
Café	65	1 per 5m ²	13	12	156	
Communal Workspace	180	24**	24	100	2,400	
Gym	108	1 per 5m ²	22	50	1,100	
Lounge	85	30**	30	15	450	
Function Room	70	30**	30	60	1,800	
		8,846				
		d on 12 Hour Day)	4,423			
		Infiltration	(I) 10% (COP Appei	ndix B – Table 2.4)	442	
		er Flow (I/s) PG +I	4,865			
	Commercial P	eaking Factor (P	f _{Dom, Ind}) (COP Apper	. ,	4.5	
			20,346	0.235		
	Design Foul Flow (Pf _{Dom, Ind} x PG) + I (I/s) Misconnection Allowance (SW) 2% (COP Appendix B – Table 2.10)					0.233
	Design Flow (I/s)					0.468

Table 2-3: Foul Flow Calculations for Commercial Development

The combined residential and commercial design flow is 4.8l/s. This figure has been proportionally applied as a base flow to the heads of the wastewater sewer runs within the MicroDrainage design model, see Appendix 5 for the results.

Figure 3-1: Hydrological Features of the Area

can be infiltrated to ground in specific areas designated for interception purpose, which is explained in greater detail below. Further infiltration testing in accordance with BRE 365 will be conducted in due course to determine accurate results.

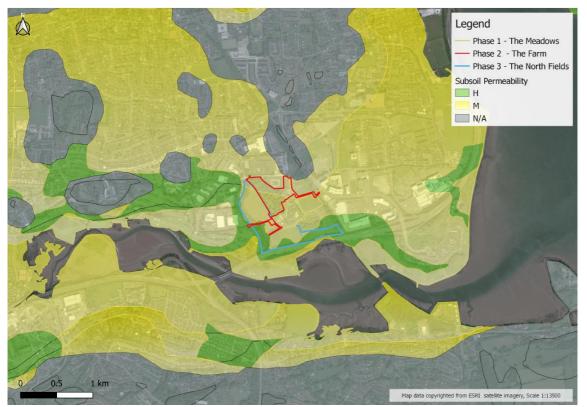


Figure 3-2: Soil Permeability

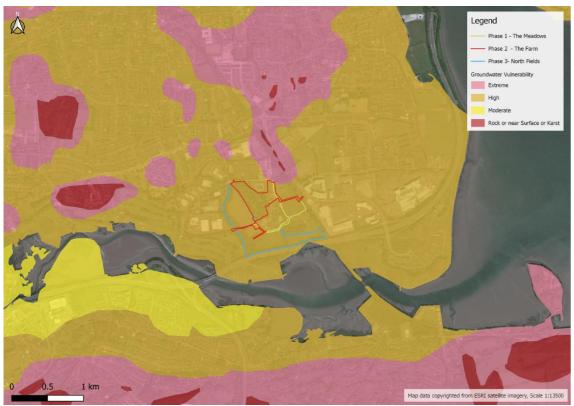


Figure 3-3: Groundwater Vulnerability

Cork City Council drainage records indicate there is an existing 1350mmØ trunk storm sewer located approximately 200m to the west of the Phase 2 site, outside the boundary of the Applicant's lands, which runs in a north-south direction before crossing under the South Ring Road (N40) and discharging to the Douglas Estuary, see Appendix 7.

A feasibility study of the local area has revealed that there is an existing 225mmØ storm sewer in the road adjacent to the eastern boundary of the site (increasing downstream to a 450mm/750mmØ), which runs north to south before turning in a westerly direction and connecting to the 1350mmØ storm sewer described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

3.3 Greenfield Runoff

The total developable site area is 4.28-hectares however this includes large open space and treed areas along the western and northern boundaries which will remain undeveloped and therefore will not be positively drained to the development surface water drainage system, and these areas are excluded from the surface water calculations of Qbar. In this context a figure of 1.48ha is used for the site area.

The greenfield runoff rate has been estimated using the HR Wallingford Greenfield runoff estimation online tool (report attached in Appendix 8). The online tool calculated a Qbar figure of 12.2 l/s (equivalent to 8.24 l/sec/ha). A summary of the design values output by the HR Wallingford Greenfield runoff estimation online tool is shown below:

Design Criteria	Value
Site Area (ha)	1.48
Soil Type	4
SPR	0.47
SAAR (mm)	1106
1 year factor	0.85
30-year factor	1.65
100-year factor	1.95

Table 3-1: HR Wallingford Design Value Outputs

Given the proximity of the site to the Douglas Estuary the controlled outflow from the development has been set to the Q100 figure (the flow from the site in its greenfield condition in a 100-year storm event). This approach was proposed to Cork City Council Drainage Department and they were satisfied with the approach. See correspondence from Cork City Council in Appendix 9.

The growth factor to be applied when calculating Q100 from Qbar is 1.95 giving an upper limit to the discharge from the site at 23.79 l/sec. This is the value that will be used in later detailed design as the upper limit of surface water discharge from the development.

Proposed Development Surface Water Management System 3.4

The proposed surface water management system will, as far as is feasible, be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS).

The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimise the impact of urbanisation by replicating the runoff characteristics of a greenfield site. The criteria provide a consistent approach to addressing both rate and volume of runoff as well as ensuring the environment is protected from pollution that is washed off roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection •
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (In discussion with Cork City Council there is no requirement for long term storage)

3.4.1 Layout of the Proposed Network

The proposed surface water network will include a storm drainage pipe network, attenuation storage structures and several SuDS features which will aid the reduction of runoff volumes by slowing surface water flows, providing the opportunity for evapotranspiration and providing the opportunity for infiltration to ground. Both the interception and attenuation storage requirements of GDSDS will be sufficiently met.

An assessment of the potential SuDS measures that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753 as guidance. The following SuDS features have been identified as applicable and will be provided within the proposed scheme:

- Green Roofs: will be provided throughout the site on flat roofs, where possible. The green roof will be an extensive type with sedum planting at the surface with a drainage layer beneath. The drainage layer will convey flows to discharge locations. It is not proposed to restrict the discharges from the roofs. Where possible discharges from roofs will be tied into planters or permeable paving substrata via diffusers.
- Permeable Paving: will be provided for all parking spaces and the creche play area. Permeable paving will be a Type B as per SuDS Manual, CIRIA 753, a combination of infiltration and piped drainage.
- Tree Pits/Bioretention Planters: will be provided in every feasible location where there is a proposed tree or planter. The tree pits will contain engineered soil filled tree boxes with drainage pipes beneath to link trees together and tie in with the proposed surface water sewer. The bioretention planters will consist of a shallow landscaped depression at the surface with a drainage layer beneath.
- StormTech Attenuation Tank: will be provided at the natural low point, at the southwest of the site for final storage of runoff volumes before discharging to the existing surface water network at a controlled rate.

The SuDS features will be designed to work in sequence thereby creating a treatment train. The proposed SuDS layout is shown on see Drawing No. 21207-JBB-PH2-XX-DR-C-04005 and the overall drainage arrangement is shown on Drawing No. 21207-JBB-PH2-XX-DR-C-04002, both included with this submission.

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework The gravity surface water sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 10 of this report.

The contributing surface areas of the development has been split up and tabulated below:

Area Type	Units (ha)
Total Site Area	4.28
Catchment Area	1.48
Green Roof	0.13
Permeable Paving	0.01
Tree Pits/Bioretention Planters	0.05
Impermeable Area	1.17
Open Space Without Formal Drainage	0.12
Total Drained Area	1.36

Table 3-2: Surface Areas

3.4.2 Interception Storage

In accordance with the requirements of GDSGS, at least 5mm, and preferably 10mm, of interception storage should be provided on site, where runoff to the receiving water can be prevented.

In the case of this Phase 2 development the total drained area is 1.36ha (13.600m²) as per Table 3.2 above. This results in a required interception storage volume of 68.0m³ (13,600 X 0.005) The proposed interception storage will be provided by permeable paving, swales, tree pits and bioretention areas.

Green roofs are proposed throughout the development. These areas cover a total area of 1,300m². The build-up in the green roof system will provide a minimum of 5mm of interception storage per 1m², allowing for a total interception storage volume of 6.50m³.

Permeable surfaces including permeable paving, tree pits and bioretention planters are proposed throughout the development, for a total area is 600m². The drainage pipe within the gravel bed for these areas will be set at 50mm above the bed formation giving (assumed 30% voids) interception stage equivalent to 15mm storage depth. Total interception volume provided in the permeable paving equals 9m³.

The proposed StormTech attenuation tank has a surface area of 420m². Interception storage will be provided within the base of the tanks for a depth of 300mm depth of stone below the StormTech Chambers. Assuming the tanks have a void ratio of 43% (which is conservative), the total interception storage volume provided is 54.18m³.

The overall interception storage volume provided is therefore 69.68m³ which represents approximately 5.1mm of interception storage which is above the required minimum provision as detailed above.

3.4.3 Attenuation Storage

The proposed rate of surface water discharge from the development will be limited to that of the greenfield runoff for a 100-year storm event, as described in Section 4.2. Attenuation will be provided by StormTech attenuation chambers which will cater for the 100-year storm event with 10% climate change allowance added. The proposed surface water network will be contained in a single catchment, see Figure 3.4.

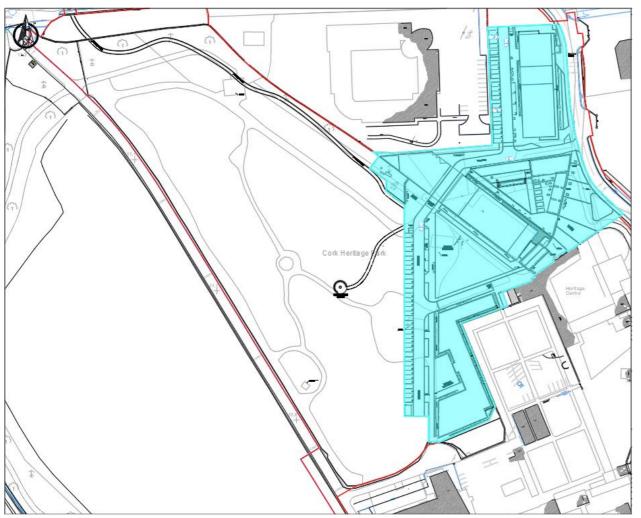


Figure 3-4: Surface Water Catchment Areas

The various SuDS components being proposed as part of the development will provide some attenuation, reduce flow rates and will disperse surface water via evapotranspiration and infiltration. However, at this stage of the design process, and to ensure a robust design, we are designing for the worst case and have not assumed a reduction in runoff volume from the various SuDS features and permeable surfaces in the attenuation storage calculations. This will be revisited closer to construction stage, subject to a granted planning permission.

Preliminary attenuation volume calculations, based on the above criteria, are summarised in Table 3.3. (See Appendix 11 for detailed calculations)

Ref.	Catchment Area (ha)	Q100 (l/s)	Required Storage Volume 100yr +10% C.C. (m³)	Provided Attenuation Volume (m ³)	Attenuation Storage Type
A	1.48	23.79	501	501	StormTech Chambers

Table 3-3: Summary of Attenuation Requirements and Proposals

3.4.4 Water Quality

The proposed development is residential and therefore is considered a low-level pollution hazard. Surface water runoff will be directed to the SuDS features as mentioned above and will therefore benefit from their pollutant removal qualities. However, to ensure water quality standards are met, we are proposing a hydrocarbon interceptor upstream of the StormTech attenuation tank.

Simple Index Approach

The effectiveness of the chosen SuDS components to achieve water quality can be assessed using the 'simple index approach' as described in CIRIA C753.

The simple index approach designates risk indices to the various areas of development to determine their possible pollutant contribution. Similarly, the SuDS features are designated mitigation indices and if the mitigation indices are larger than the risk indices the water quality objectives are considered satisfied.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Driveways, car parks, low traffic roads	Low	0.5	0.4	0.4

Table 3-4: Pollution Hazard Indices for Different Land Uses

As can be seen in Table 3.5 below the total mitigation potential of the SuDS features far outweigh the contamination risks. Secondary (or further) stages in the treatment train are assigned 50% of the stated treatment indices value.

SuDS Component	TSS	Metals	Hydrocarbons			
Permeable paving	0.7	0.6	0.6			
Bioretention/Tree pits	0.8	0.8	0.8			
Petrol Interceptor	0.4	0.4	0.4			
Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters						

Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters

3.4.5 Amenity and Biodiversity

Meeting amenity and biodiversity standards is all about creating attractive, pleasant, and liveable urban areas for both people and for nature.

The proposed SuDS features within this development will not only be aesthetically pleasing, but they will also assist the creation of liveable habitats for nature by retaining rainfall at the source. The final details of these features will be drawn-up in consultation with the landscape design and ecological consultants on the design team.

Conveyance of Surface Water Outflow to Final Discharge Location 3.5

A new 225mmØ surface water outfall pipe will convey the restricted flows from the site in a south-westerly direction connecting to the existing 750mmØ surface water sewer upstream of its connection to the existing 1350mmØ surface water pipe which in turn discharges to the Douglas Estuary further to the south.

The controlled discharge from the proposed development (a maximum of 23.79 l/sec) will be minimal relative of the capacity of the existing 750mmØ and 1350mmØ pipes and given that this controlled outflow matches existing greenfield runoff from the site in a 100-year storm event these flows will not create a significant increase in the flow to the Douglas Estuary.

The proposed route of this sewer is shown on Drawing No. 21207-JBB-PH2-XX-DR-C-04006.

SECTION 4: WATER SUPPLY

Existing Watermain Network 4.1

Cork City Council watermain records show there is an existing 150mmØ watermain in the roadway adjacent to the eastern boundary of the site, an existing 300mmØ watermain in the roadway to the north of the site and a 200mmØ watermain to the south. There is also an existing 1200mmØ trunk watermain running through the greenfield area in the ownership of the Applicant to the south of development site, see Appendix 12.

4.2 **Pre-Connection Enguiry Stage**

Following a Pre-Connection Enquiry, Irish Water (IW) have issued a Confirmation of Feasibility (COF) that the site can be serviced by its water infrastructure network. This COF is included in Appendix 4.

IW have advised that the connection is to be made to the existing 300mmØ ductile iron watermain in the roadway to the north of the site.

Design Acceptance Stage 4.3

The proposed design for water supply infrastructure within the development was progressed in accordance with Irish Water's Code of Practice for Water Infrastructure and was submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

To serve the development a 150mmØ watermain will be connected to the existing 300mmØ ductile iron watermain in the roadway to the north of the site. 40mmØ spurs will be taken off the proposed 150mmØ watermain and will feed a local cold water storage tank / booster station within the plant room of each apartment block. A bulk flow meter will be provided on each of the apartment block supply lines. From the plant rooms each of the residential and commercial units will be fed and metered individually.

Fire hydrants will be provided such that each building will be within 46m of a hydrant and these hydrants will be fully accessible to the fire service. Apartment buildings will be subject to Fire Safety Certificate applications and the provision of appropriate water supply for firefighting will be addressed in these applications.

The proposed water supply layout plans are shown on Drawing No. 21207-JBB-PH2-XX-DR-C-03002.

Loading Calculations 4.4

Water demand for the development is determined in accordance with Irish Water Code of Practice for Water Infrastructure.

Per-capita consumption = 150 litres/person/day

Average day / peak week demand (ADPWD) = 1.25 x ADDD

Peak Water Demand = 5.00 x ADPWD

Page 13

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)
Residential	140	2.7	378	56,700	0.656	0.82	4.1
Total						4.1	

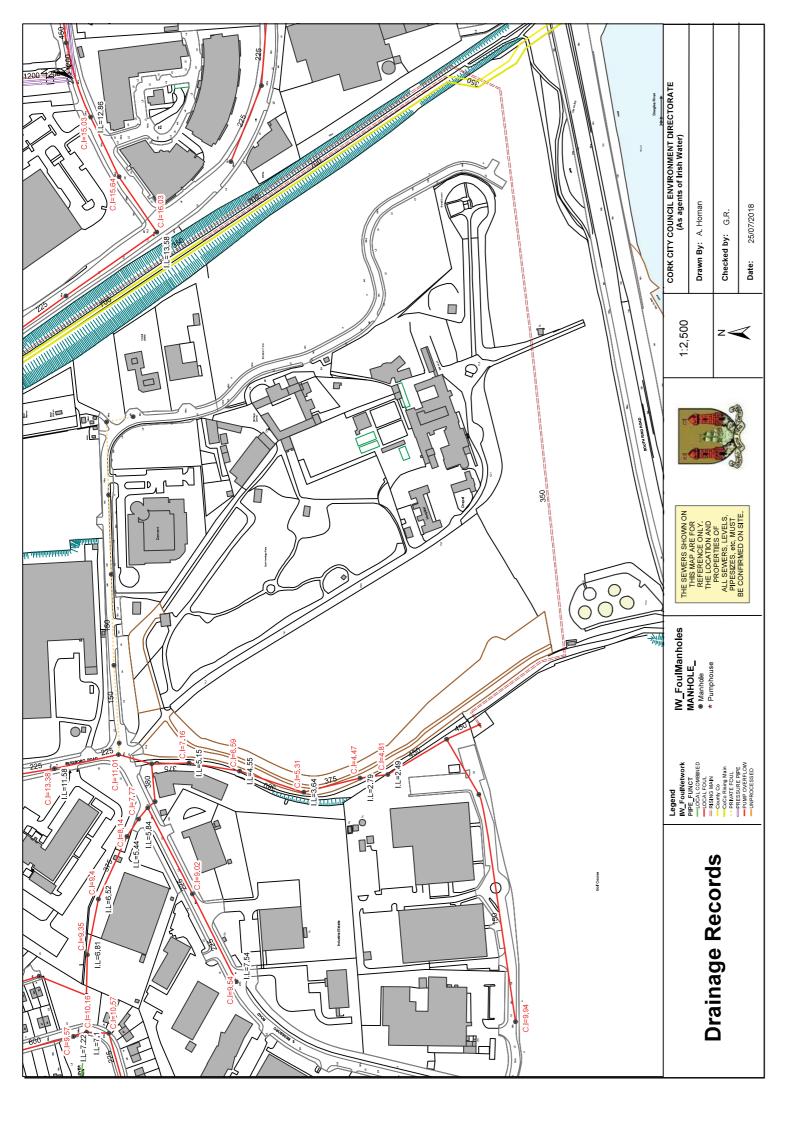
 Table 4-1: Water Demand for Residential Development

Use	Floor Area (m²)	Occupancy Rate	Population (P)	Average Daily Demand (I/day)	Average Daily Demand (I/s)	Average Day/Peak Week Demand (I/s)	Peak Hour Water Demand (I/s)
Oracha	0.40	24	24	4.050	0.054	0.000	0.040
Creche	242	31	31	4,650	0.054	0.068	0.340
		1 per 20m ²	3	450	0.027		
Café	65	1 per 5m ²	13	1,950		0.035	0.175
Communal Workspace	180	24	24	3,600	0.042	0.053	0.265
Gym	108	1 per 5m2	22	3,300	0.038	0.048	0.240
Lounge	85	30	30	4,500	0.052	0.065	0.325
Function Room	70	30	30	4,500	0.052	0.065	0.325
						Total	1.67
	Total (Based on 12 Hour Day)						

 I otal (Based on 12 Hour Day)
 0.835

 Table 4-2: Water Demand for Commercial development
 0.835

PROPOSED SITE LAYOUT PLAN



Appendix 2

CORK CITY COUNCIL - EXISTING WASTEWATER NETWORK

Appendix 3

AS-BUILT LOCAL DRAINAGE NETWORK

a. a.	
	NOTES.
	To be read in conjunction with all relevant drawings and specification. Do roll scale if in doubt mix. All dimensions to be checked on pile.
	. At unersons to be checked on part.
Legend	
Foul & Sto	orm Site Connections
	and connections
O-Existing Se	ervices Connected
1	
	υ.
	10 m
	ب می ب
· · · · · · · · · · · · · · · · · · ·	
	and the second
States of the second	
Anna Anna A	5-1-1 Brill
- Cli	With call
m	
- Janu	
10	
10 8.354 6.850	H.
1 088.3	.
1510 - 6273 - 6160	*
	·
	CITY CO.
	CC CILINCE COLORE
	Same The Contact (Same by U)
	557 308 34 38
	0. ISSUED FOR CONSTRUCTION N.M. 0.0°D. 11.04.°06
	1. No desimilation 1. No desimilatio
	A. (abb) (abb) A. (abb
	1. No desimilation 1. No desimilatio
	1. To Construct the Construction 1. To Construct the Construct the Construction 1. To Construct the Construct the Construction 1. To Construct the Con
	1. No controlocito 1. No controlocit

Appendix 4

IRISH WATER – CONFIRMATION OF FEASIBILITY

IRISH WATER – STATEMENT OF DESIGN ACCEPTANCE

Tim Finn

JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island Co. Cork T45KH74

9 February 2022

Re: CDS21001326 pre-connection enquiry - Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 140 unit(s) and creche at Bessboro, Blackrock, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Bessboro, Blackrock, Co. Cork (the Premises). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

r	
SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>
Water Connection	Feasible without infrastructure upgrade by Irish Water
Wastewater Connection	Feasible Subject to upgrades
	SITE SPECIFIC COMMENTS
Water Connection	Connection to be made to the existing 300mm DI adjacent to site on Bessboro Rd. No works to interfere with existing 1200mm trunk main. No diversions of this main shall be permitted.
Wastewater Connection	Bessborough WWPS is almost at design loading capacity. Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development. This upgrade project is scheduled to be completed by Q4 2022 (this may be subject to change) and the proposed connection could be completed as soon as possibly practicable after this date.

Stlurthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann
Bosca OP 448
Oifig Sheachadta na
Cathrach Theas
Cathair Chorcaí

Irish Water PO Box 448. South City Delivery Office Cork City

www.water.ie

	New development to disc inlet sewer.
Strategic Housing Development	Irish Water notes that the to the Strategic Housing I submitting your full applic must have reviewed this of Statement of Design Acco wastewater services.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available

charge directly to Bessborough WWPS via a new

scale of this development dictates that it is subject Development planning process. In advance of cation to An Bord Pleanala for assessment, you development with Irish Water and received a eptance in relation to the layout of water and

information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- Irish Water Connection Policy/ Charges can be found at <u>https://www.water.ie/connections/information/connection-charges/</u>
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Gronne Maeeis

Yvonne Harris

Head of Customer Operations

Diarmuid O' Brien JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island, Co. Cork T45KH74

25 February 2022

Re: Design Submission for Bessboro, Blackrock, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS21001328

Dear Diarmuid O' Brien,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Kyle Jackson Email: Kyle.jackson@water.ie

Yours sincerely,

Monne Massis

Yvonne Harris Head of Customer Operations

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Appendix 5

FOUL SEWER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:08	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-	Checked by	Dialitage
Innovyze	Network 2020.1	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%) 0	
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m) 0.200	
Flow Per Person (l/per/day)	150.00	Maximum Backdrop Height (m) 4.000	
Persons per House	2.70	Min Design Depth for Optimisation (m) 1.200	
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s) 0.75	
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X) 500	

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F1.000	67.499	2.120	31.8	0.000	0	1.6	1.500	0	225	Pipe/Conduit	ð
F2.000	25.192	0.420	60.0	0.000	0	0.1	1.500	0	225	Pipe/Conduit	ð
F1.001	27.040	0.588	46.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	6
F1.002	28.445	0.603	47.2	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ð
F3.000	30.656	0.511	60.0	0.000	0	0.1	1.500	0	255	Pipe/Conduit	ð
F1.003	64.774	0.432	149.9	0.000	0	2.0	1.500	0	255	Pipe/Conduit	6
F1.004	59.191	0.423	139.9	0.000	0	0.0	1.500	0	255	Pipe/Conduit	- Ē
F1.005	24.505	0.164	149.4	0.000	0	1.0	1.500	0	255	Pipe/Conduit	- Ē
F1.006	23.563	0.195	120.8	0.000	0	0.0	1.500	0	255	Pipe/Conduit	Ū,
F4.000 F4.001 F4.002			50.0	0.000 0.000 0.000	0 0 0	0.0	1.500 1.500 1.500	0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0 0
1 1.002	5.455	0.402	20.0	0.000	0	0.0	1.000	0	223	r rpc/ conduite	•

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)			Cap (1/s)	Flow (1/s)	
F1.000	15.500	0.000	1.6	0	0.0	22	0.79	2.04	81.0	1.6	
F2.000	13.800	0.000	0.1	0	0.0	7	0.26	1.48	59.0	0.1	
F1.001 F1.002		0.000 0.000	1.7 1.7	0 0	0.0	25 25	0.71 0.71	1.69 1.67		1.7 1.7	
F3.000	12.700	0.000	0.1	0	0.0	7	0.25	1.61	82.3	0.1	
F1.003 F1.004 F1.005 F1.006	11.727 11.304	0.000 0.000 0.000 0.000	3.8 3.8 4.8 4.8	0 0 0	0.0 0.0 0.0 0.0	47 46 52 50	0.59 0.61 0.64 0.69	1.02 1.05 1.02 1.13	51.9 53.8 52.0 57.9	3.8 3.8 4.8 4.8	
F4.000 F4.001 F4.002		0.000 0.000 0.000	0.0 0.0 0.0	0 0 0	0.0 0.0 0.0	0 0 0	0.00 0.00 0.00	1.48 1.63 2.54		0.0 0.0 0.0	

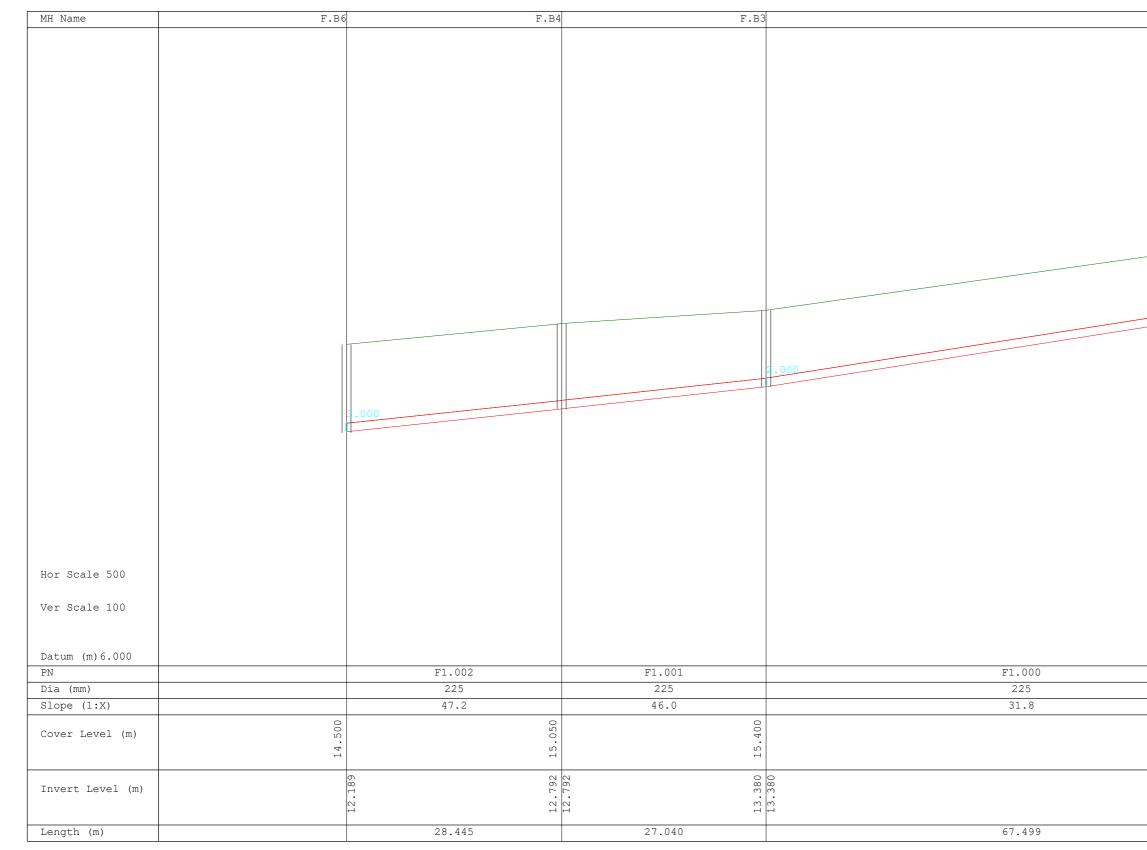
J.B. Barry & Partners Ltd 20217 -Classon House Dundrum Business Park (The Far Dublin 14 Foul Sew Date 21/02/2022 11:08 Designed File 21207-JBB-PH2-XX-CA-Checked Innovyze Network

PN	Length	Fall	Slope	Area	Houses	Ba	se	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F1.007	7.397	0.200	37.0	0.000	0		0.0	1.500	0	255	Pipe/Conduit	ď
F1.008	12.727	0.350	36.4	0.000	0		0.0	1.500	0	255	Pipe/Conduit	
F1.009	26.235	1.251	21.0	0.000	0		0.0	1.500	0	255	Pipe/Conduit	ď
F1.010	36.829	1.632	22.6	0.000	0		0.0	1.500	0	255	Pipe/Conduit	<u>.</u>
F1.011	38.614	1.464	26.4	0.000	0		0.0	1.500	0	255	Pipe/Conduit	
F1.012	43.328	1.478	29.3	0.000	0		8.8	1.500	0	255	Pipe/Conduit	<u> </u>
F1.013	45.563	0.455	100.1	0.000	0		0.0	1.500	0	255	Pipe/Conduit	<u>.</u>
F1.014	62.433	2.044	30.5	0.000	0		6.1	1.500	0	255	Pipe/Conduit	<u>.</u>
F1.015	19.092	0.475	40.2	0.000	0		0.0	1.500	0	255	Pipe/Conduit	

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.007	10.945	0.000	4.8	0	0.0	37	1.04	2.05	104.9	4.8
F1.008	10.745	0.000	4.8	0	0.0	37	1.04	2.07	105.8	4.8
F1.009	10.395	0.000	4.8	0	0.0	32	1.27	2.73	139.4	4.8
F1.010	9.144	0.000	4.8	0	0.0	33	1.23	2.63	134.3	4.8
F1.011	7.512	0.000	4.8	0	0.0	34	1.17	2.43	124.2	4.8
F1.012	6.048	0.000	13.6	0	0.0	58	1.54	2.31	117.8	13.6
F1.013	4.570	0.000	13.6	0	0.0	80	0.99	1.25	63.6	13.6
F1.014	4.115	0.000	19.7	0	0.0	71	1.69	2.26	115.4	19.7
F1.015	2.071	0.000	19.7	0	0.0	77	1.53	1.97	100.6	19.7

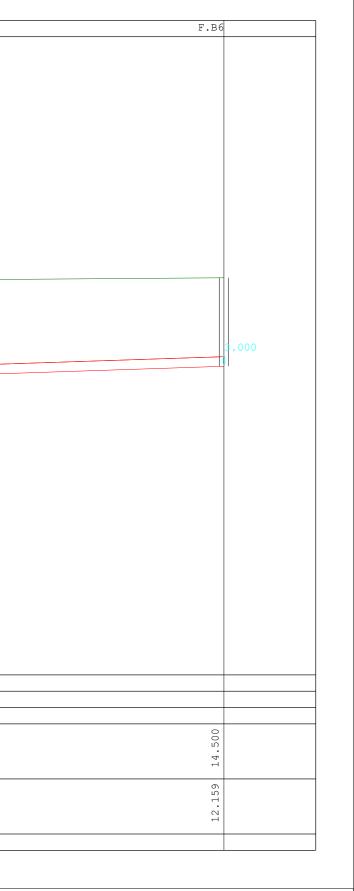
Free Flowing Outfall Details for Foul - Main


Out	tfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		
	F1.015	F.A33		3.800		1.596		0.000	0	0

©1982-2020 Innovyze

	Page 2
Bessborough SHD	
rm)	
wer	Micro
d by DOB	
by	Drainage
2020.1	

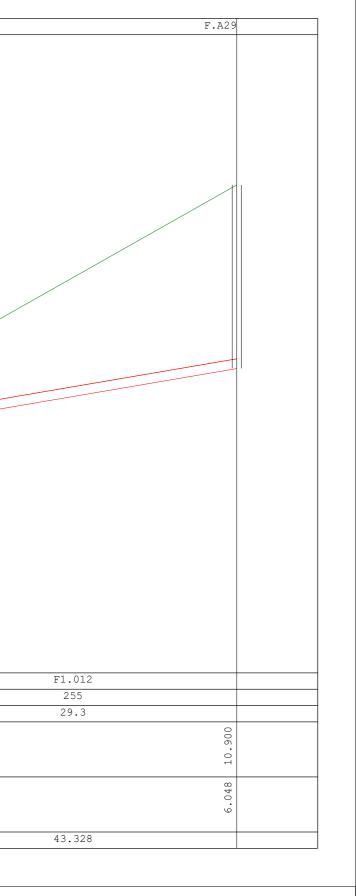
Network Design Table for Foul - Main


J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	· · ·

F.B1	
-	
00	
17.300	
0	
15.500	
15.	

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	F.B9	F.B8		F.B7	
Hor Scale 500					
Ver Scale 100					
Datum (m)4.000					
PN		.005	F1.004		F1.0
Dia (mm)		255	255		255
Slope (1:X)	1	49.4	139.9		149.
	0	0		0	
Cover Level (m)	00	09		40	
	13.000	13.600		14.400	
	40	4 C C C C C C C C C C C C C C C C C C C		27	
	Li li	<u> m</u>			
Invert Level (m)		• •		• • •	
Invert Level (m)	• = =				
Invert Level (m)	11.140	1.505	59.191	11.727 11.727	64.7


J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

	F.A29	F.B17	F.B16	F.B15	F.B1	4 F
Hor Scale 500						
Ver Scale 100						
Ver Scale 100 Datum (m)1.000		F1 011	F1 010	F1 000	F1 009	F 1
Datum (m)1.000 PN		F1.011	F1.010	F1.009	F1.008	F1.
Datum (m)1.000 PN Dia (mm)		255	255	255	255	25
Datum (m)1.000 PN Dia (mm)						25
Datum (m)1.000	10.900	255 26.4	255	255	255	25
Datum (m)1.000 PN Dia (mm) Slope (1:X)		255 26.4	255 22.6 009 .01	255 21.0 40 71	255 36.4	25

F.B13	F.B9	
	4.002	
F1.007	F1.006	
255	255	
37.0	120.8	
00	00	
12.400	13.000	
T		
1 L	10 10	
10.945	10.945	
10	11 10	
7.397	23.563	
	23.303	

J.B. Barry & Partners Ltd		Page 4
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Drainage
Innovyze	Network 2020.1	1

MH Name	F.A32	F.A31	F.A30	
				Í
Hor Scale 500				
Ver Scale 100				
Datum (m)-2.000		F1.014	F1.013	
Dia (mm)		255	255	
Slope (1:X)		30.5	100.1	
	0			
Cover Level (m)	3.500	6.400	6.000	
	71		0	0
Invert Level (m)	2.071	4.115 4.115	4.570	4. U
Length (m)		62.433	45.563	

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	F.A33	F.A32	2
Hor Scale 500			
Ver Scale 100			
Datum (m)-6.000			
PN		F1.015	
Dia (mm)		255	
Slope (1:X)		40.2	
	0		
Cover Level (m)	00 80 3	3.500	
		(*)	
		596 071	
Invert Level (m)		1.596	
Length (m)		19.092	

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Digitige
Innovyze	Network 2020.1	

MH Name	F.B3	F.B2	
	1.000		
lor Scale 500			
/er Scale 100			
Datum (m)6.000		F2.000	
Dia (mm)		225	
Slope (1:X)		60.0	
	0		
Cover Level (m)	15.400	15.600	
	2	C1	
Invert Level (m)			
Invert Level (m)	13.380	13.800	

	Page 7
20217 - Bessborough SHD	
(The Farm)	
Foul Sewer	Micro
Designed by DOB	
Checked by	Drainage
Network 2020.1	
	(The Farm) Foul Sewer Designed by DOB Checked by

MIL Namo			
MH Name	F.B6	F.B5	
		.002	
Hor Scale 500			
Ver Scale 100			
Datum (m) 5.000			
PN		F3.000	
Dia (mm)		255	
		60.0	
Slope (1:X)			
Cover Level (m)	14.500	14.500	
	4,		
	н Н	e e	
		e. o	
Invert Level (m)		12.700	
		12	
Length (m)			
Tongth (m)		30.656	

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Foul Sewer	Micro
Date 21/02/2022 11:09	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	F.B13	F.B12	F.B11	F.B10	
MH Name	F.B13	F.B12	F.B11	F.B10	
Hor Scale 500 Ver Scale 100 Datum (m)4.000 PN Dia (mm) Slope (1:X) Cover Level (m)	12.400	F4.002 225 20.5	F4.001 225 50.0 	F4.000 225 60.0 *. ET	
Invert Level (m)		10.975	11.437 11.680	11.680	

Appendix 6

PRIORITY GEOTECHNICAL LTD - GROUND INVESTIAGTION

Our Ref: JMS/Rp/P21239 + attachments (*.pdf)

16th March, 2022

JB Barry & Partners Limited

3 Eastgate Road,

Eastgate Business Park,

Little Island,

Co. Cork,

T45 KH74.

Re: Bessborough SHD Sites, Site Investigation, Factual report.

Introduction

In November 2021, Priority Geotechnical (PGL) were requested by JB Barry & Partners Limited acting on behalf of their client Estuary View Enterprises to undertake a site investigation as part of the Bessborough SHD Sites project.

Objectives

The objective of the site investigation contract is to determine the ground and groundwater conditions in order to inform the engineering design solutions for the proposed development.

Scope

The original scope of the site investigation, which was specified by JB Barry & Partners, comprised of:

- 06Nr. Cable percussion boreholes;
- Trial pits;
- Surveying of 'as-built' levels and co-ordinates;
- All associated sampling; •
- All associated laboratory works; •
- Associated reporting;

The final site works as completed is outlined, herein. This geotechnical data report presents the fieldworks records with regard to the site investigation for the Bessborough SHD Sites Project. The report should be read in conjunction with the exploratory records, the photographic records and the laboratory test data accompanying this report.

Site Works

This investigation was carried out in accordance with Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards (BS 5930 (2015) Code of Practice for Site Investigation and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, in situ Tests Parts 1 to 9).

The direct intrusive fieldworks were undertaken from the 10th and 17th January, 2022 to under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, accompanying this report.

Cable Percussion Boreholes

Six (06) cable percussion boreholes were drilled to depths 4.4m below existing ground level (bgl) to 9.1m bgl using PGL's Dando 2000 Rig and 200mm diameter casing. The logs are accompanying this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
BH01	4.4	13/01/2022
BH02	9.1	10/01/2022
BH03	8.4	12/01/2022
BH04	7.3	14/01/2022
BH05	7.4	17/01/2022
BH06	7.0	13/01/2022

Chiselling					
Location	Depth Top (m bgl)	Depth Base (m bgl)	Duration (hh:mm)	Tool	
BH01	1.20	1.30	01:00	Chisel.	
	4.30	4.40	01:00	Chisel.	
BH02	2.75	2.90	01:00	Chisel.	
DEUZ	8.90	9.10	01:00	Chisel.	
DU02	4.90	5.00	01:00	Chisel.	
BH03	8.30	8.40	01:00	Chisel.	
BH04	3.80	4.00	01:00	Chisel.	
БП 04	7.20	7.30	01:00	Chisel.	
DUOS	6.70	6.90	01:00	Chisel.	
BH05	7.30	7.40	01:00	Chisel.	
PLIOC	5.75	5.95	01:00	Chisel.	
BH06	6.90	7.00	01:00	Chisel.	

Trial Pits

Seven (07) trial pits were excavated to depths 0.3m bgl to 4.6m bgl using a 14t tracked excavator. The exploratory logs and photographic records accompany this factual report.

Location	Depth (m bgl)	Date (dd/mm/yyyy)
TP01	3.9	11/01/2022
TP02	3.2	10/01/2022
TP03	4.5	11/01/2022
TP04	4.5	13/01/2022
TP05	4.5	14/01/2022
TP06	0.3	12/01/2022
TP06A	4.6	12/01/2022

Sampling

A total of sixty two (62) bulk disturbed samples (B) and twenty two (22) small disturbed samples (D) were recovered from the exploratory holes in accordance with Geotechnical Investigation and Sampling – Sampling Methods and Groundwater Measurements (EN ISO 22475-1:2006).

In-Situ Testing

Standard Penetration Tests (SPT)

A total of thirty nine (39) standard penetration tests, were carried out in the cable percussion boreholes using the 60° solid cone (CPT) in place of the standard split barrel sampler. The data was presented on the relevant logs accompanying this factual report.

Falling Head Tests

Two (02) in situ falling head permeability tests were carried out in boreholes; in accordance with BS5930: 1999, Section 4: Cl. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data was presented on the relevant borehole log presented accompanying this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_2}{\log_2}$$

Generally for all tests the specific depth range of the test was the deposits below the depth of casing. A mean k measured ($k_{H} = k_{V}$), permeability in the soil was assumed equal in both horizontal and vertical direction, $(k_H/k_V = 1)$. The test geometry provided a shape factor, f for the test undertaken in the standpipe well.

Dynamic Probing

PGL's Competitor dynamic probing rig was used to undertake dynamic probing (DP(H); 50kg drop weight, 500mm drop height) in general accordance with Geotechnical Investigation and Testing, Part 2, Dynamic probing, BS EN ISO 22476-2:2005. The blows per 100mm (N_{100 H}) were recorded to refusal being 25blows without progress over 100mm. Six (06) number dynamic probes progressed to refusal at depths 2.7m bgl to 8.8m bgl. The exploratory logs accompany this factual report.

$$\frac{(H_0/H_1)}{t}$$

Location	Refusal depth, m bgl
DP01	3.7
DP02	8.8
DP03	2.7
DP04	5.0
DP05	3.0
DP06	3.5

Survey and Drawings

The 'as built' exploration locations were surveyed to the Ordinance Survey Irish Transverse Mercator system of co-ordinates (ITM) and elevations to Malin Head datum and shown on the relevant exploratory logs and the Exploratory Location Plans (P21239-SI-A, P21239-SI-01) accompanying this report.

Location	Easting	Northing	Ground Level (mOD)	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
BH01	171820.78	70468.88	16.64	4.40	13/01/2022
BH02	171741.94	70395.18	13.07	9.10	10/01/2022
BH03	171738.42	70311.70	11.49	8.40	12/01/2022
BH04	172026.44	70364.45	12.50	7.30	14/01/2022
BH05	172034.00	70300.87	12.21	7.40	17/01/2022
BH06	171946.00	70338.05	13.57	7.00	13/01/2022
DP01	171821.58	70465.48	16.54	3.70	13/01/2022
DP02	171742.31	70392.88	12.93	8.80	13/01/2022
DP03	171735.89	70311.95	11.53	2.70	13/01/2022
DP04	172027.93	70363.86	12.40	5.00	13/01/2022
DP05	172033.97	70304.80	12.21	3.00	14/01/2022
DP06	171944.50	70343.17	13.61	3.50	13/01/2022
TP01	171822.48	70466.73	16.60	3.90	11/01/2022
TP02	171742.96	70394.13	13.04	3.20	10/01/2022
TP03	171736.67	70314.17	11.80	4.50	11/01/2022
TP04	172026.89	70362.36	12.35	4.50	13/01/2022
TP05	172033.99	70303.02	12.21	4.50	14/01/2022
TP06	171940.73	70337.93	13.69	0.30	12/01/2022
TP06A	171944.88	70339.22	13.61	4.60	12/01/2022

Laboratory Testing

Laboratory testing was ongoing at the time of reporting.

Published Geology

A search of the Geological Survey data base and 1:100,000 mapping (Sheet 25) identified two (02) major lithological units defining the area. The majority of the site is underlain by Waulsortian Limestones (WA) described as massive unbedded Lime-Mudstones. The Little Island Formation (LI) is mapped to the north and defined by massive and crinoidal fine Limestone.

Teagasc subsoil mapping indicates that the area is underlain by Made Ground deposits. The National Groundwater Vulnerability mapping indicates the area mostly has a rating of high vulnerability.

Ground and Groundwater Conditions

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (2015) and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002),– Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, *in situ* testing and details of the samples taken, together with any observations made during the ground investigation.

Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc. Low volume groundwater flow may be cut-off by borehole casing as it progresses in stiff glacial deposits. The duration trial pit excavations remain open may not be sufficient to allow for low volume flow to present. The groundwater regime should be assessed from standpipe well installations.

Groundwater was encountered at depths 3.10m bgl to 3.90m bgl during the period of fieldworks within the extent of the borehole and pit excavations, summarised below. The exploratory locations were backfilled with grout, gravel and arisings.

SUMMARY OF GROUNDWATER

Location	Depth Strike (m bgl)	Remarks	Standpipe (Y/N)
BH01	-	None encountered.	N
BH02	-	None encountered.	Y
BH03	-	None encountered.	N
BH04	-	None encountered.	N
BH05	-	None encountered.	N
BH06	-	None encountered.	Y
TP01	-	None encountered.	N
TP02	-	None encountered.	N
TP03	-	None encountered.	N
TP04	3.9	Trickle rate of flow	N
TP05	3.9	Slow rate of flow	N
TP06	-	None encountered.	N
TP06A	3.1	Trickle rate of flow	N

Two (02) number 50mm dia. HDPE standpipe wells were constructed to allow for groundwater monitoring. The construction details are summarised below.

SUMMARY OF STANDPIPE CONSTRUCTION

Location	Depth Top (m bgl)	Depth Base (bgl)	Diameter (mm)	Pipe Type	Pipe Details
BH02	0.00	2.00	50	PLAIN	Plain.
BH02	2.00	8.50	50	SLOTTED	Slotted.
PHOC	0.00	3.50	50	PLAIN	Plain.
BH06	3.50	7.00	50	SLOTTED	Slotted.

Exploratory locations were backfilled with their arisings or gravel and bentonite for locations with monitoring wells. Backfill details are displayed graphically on the accompanying logs and summarised below.

SUMMARY OF STANDPIPE DIPS

Location	08/02/2022
Location	Depth (m bgl)
BH02	Dry
BH06	4.4

SUMMARY OF BACKFILL

GRAVEL Backfill to installation/borehole

uPVC slotted pipe

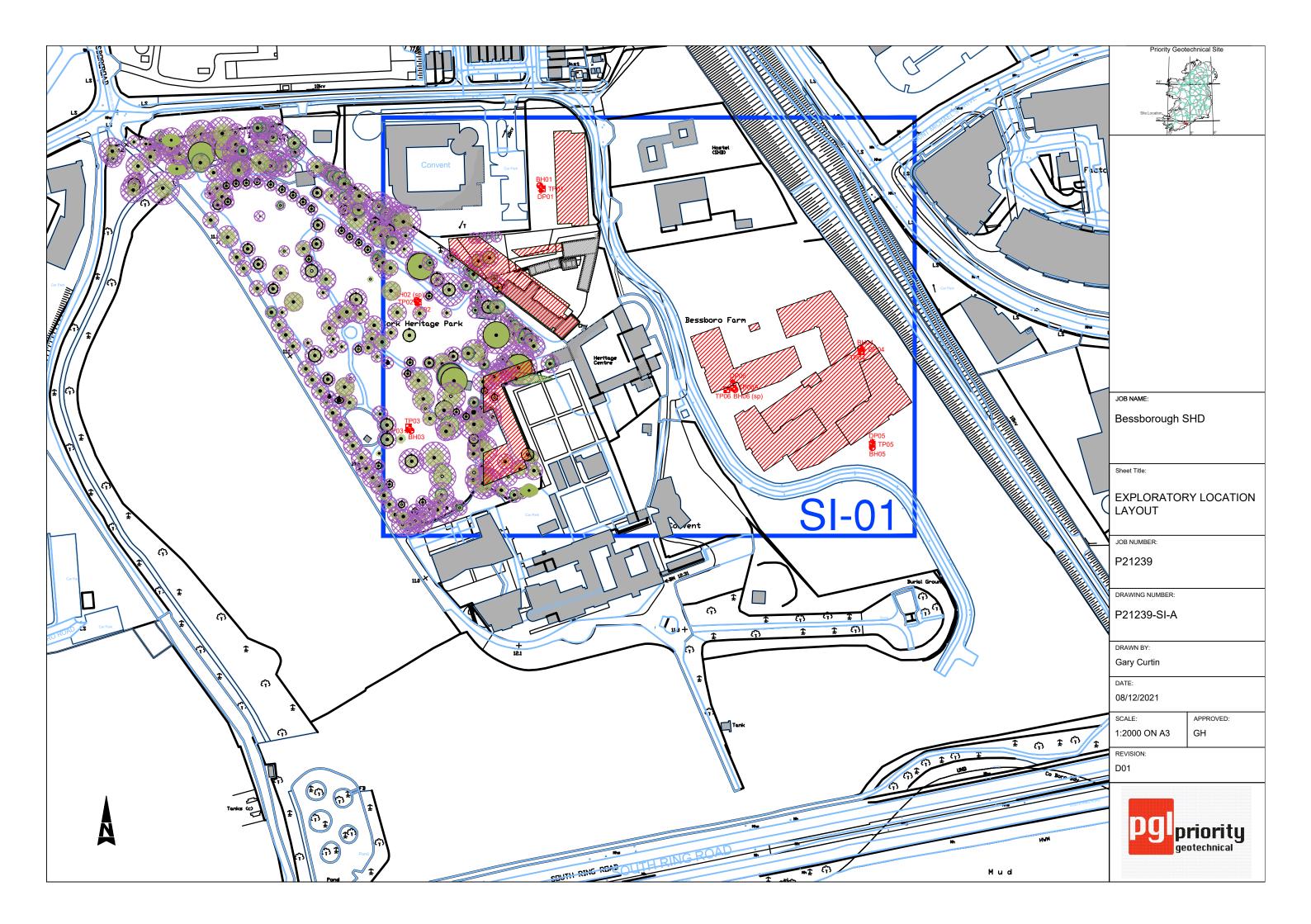
Should you have any queries in relation to the data collected and presented herein, please do not hesitate to contact our office.

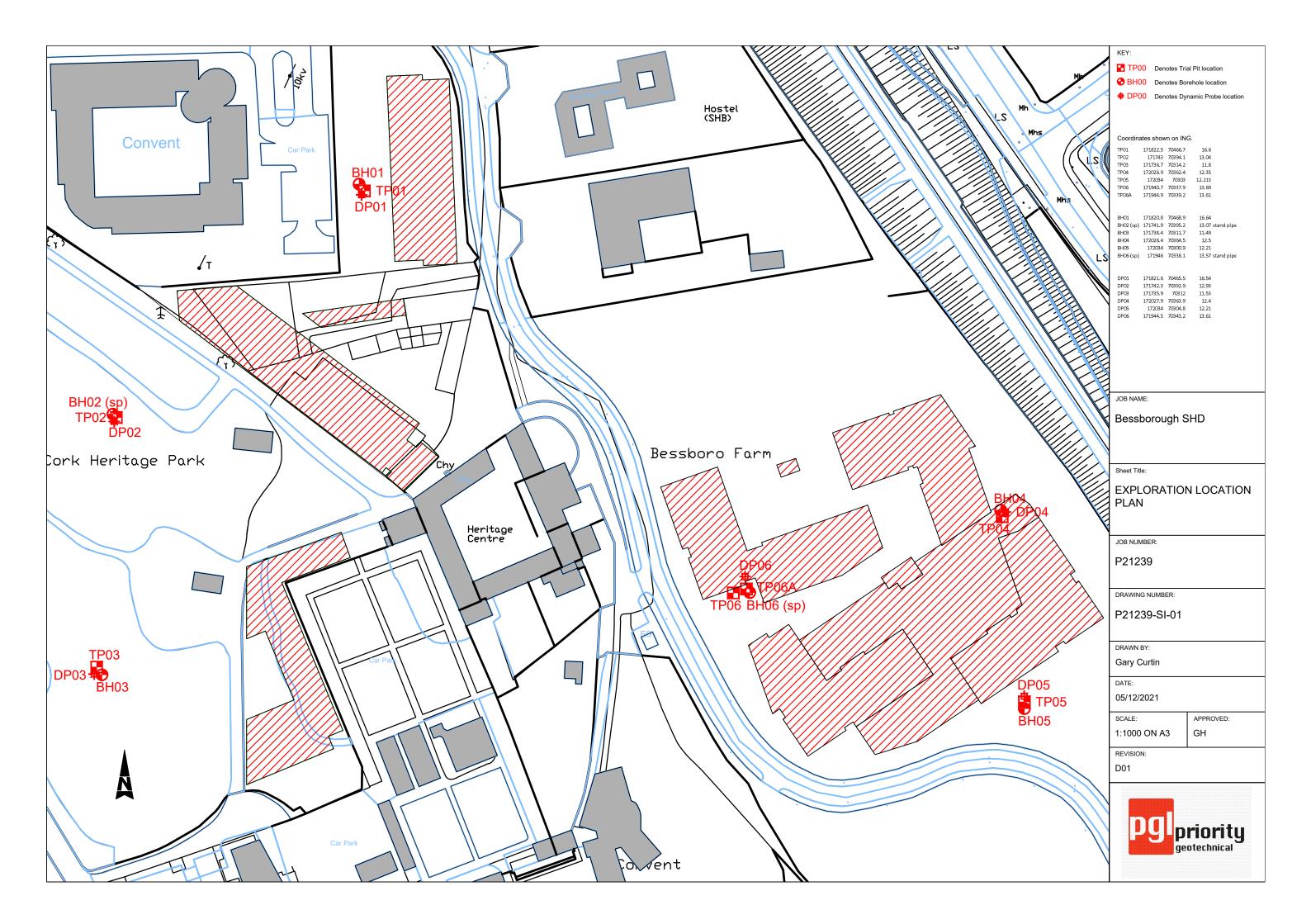
Yours sincerely, For **Priority Geotechnical**,

SMErence

James McSweeney BSc Engineering Geologist

No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations.

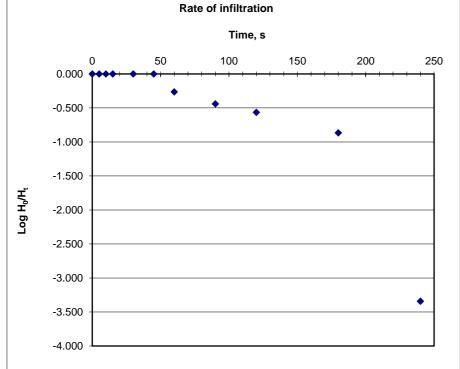

No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.


This report has been prepared for Employer and their Representative as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

P21239_Rp_F02

ARISINGS Backfill

BENTONITE Backfill to installation

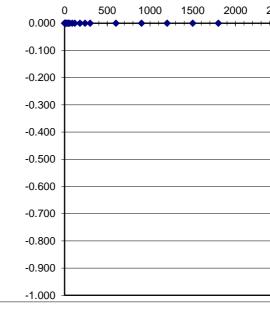

	SYMBOLS ON		אר ארא ביי		Pg	geotechn	rity _{nical}		F www.p	ity Geotech Tel: 021 463 Fax: 021 463 prioritygeot	1600 38690			Drilled By PC Logged By CS	, BH Sheet
י	STIVIDULS UN	EAPLORATC		RECORDS	Proje	ct Name	e: Bessbo	ro SHD		roject No. 21239		Co-ords:	171821E - 70	469N	Hole Cl
sions are	in metres or millim	netres			Locat	ion:	Mahon,	Cork				Level:	16.64 m	OD	Sca 1:5
					Client	:	Estuary	View E	nt. Ltd			Date:	13/01/2022	-	14/01/2022
Drillers Description						Water	_								
Easily crumbled					Well Backfill	Strike	-		n Situ Testing	Depth (m bgl)	Level (mOD)	Legend	St	ratum Descrip	tion
						(m bgl)	Depth (m bgl) 0.00 - 1.00	B	Results		· ·	<u>e</u>	Brown red, slightly	sandy slightly gr	avelly CLAY. San
		diameter sample, () de	enotes number of blov	vs to drive sampler									is fine to coarse. C to sub-rounded. D		
	- not recovered, P-p											-0~	limestone boulder		in clay with
	isturbed 38mm (on sample - distu	liameter sample										 0 0			
	n sample - distu sample - disturb						4.00 0.00				45.00	-0-0			
	ample - disturc nple - disturbe						1.00 - 2.00 1.00	B SPT	65 (5,10/65 for	1.00	15.64	0-0-C	Firm, brown red, s	lightly sandy slig	ntly gravelly CL/
	Vater Sample							(C)	150mm)				with low cobble co is fine to coarse, s		
	California Bearing Ra	tio mould sample											are sub-angular, li	mestone with dia	63-80mm.
		Contamination Analysis	S										1.20m - 1.30m: D SPT blow counts		ulders. Increas
		n Test S lump sample fro					200 200					$\left[\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right]$	SF I DIOW COUNTS	iocally.	
	D ROCK QUALITY	possible ite					2.00 - 3.00 2.00	B SPT	N=15 (3,3/4,4,3,4)			0			
	Total Core Recovery	(% of Core Run)						(C)	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
		(length of core having a	t least one full diamet	er as % of core run)											
		tion (length of solid cor													
insuf		R, SCR and RQD, the res													
		nm (Minimum/Average/					3.00 - 4.00 3.00	B SPT	N=15 (3,3/4,4,3,4)	3.00	13.64		Firm, brown red, s	lightly sandy sligl	ntly gravelly CL
	sumed Zone of Co		,	, ,			3.00	(C)	11-10 (0,0/4,4,0,4)				with high cobble c	ontent. Sand is fi	ne to coarse.
Non intact													Gravel is fine to co Cobbles are sub-r	ounded, limeston	e with dia
													63-120mm. Driller		
R													boulders.		
Groundwater	strike						4.00	SPT (C)	90 (9,10/90 for 225mm)			$[O_{n}O_{n}]$			
Ground	water level a	fter standing period							22311111)						
Date of shift ((day/mo	onth)/Depth to water at		shown above the date						4.40	12.24	1+5:D-#-O®	Enc	l of Borehole at 4.4	400m
	d depth to water a	t beginning of shift give	en below the date												
١G		n Test - split barrel samp	nler												
		n Test - solid 60° cone	pier												
	Self Weight Penetrat														
		nd Vane Test (R) demor	nstrates remoulded str	ength											
	Permeability Test		istrates remoditied Str	ciigui											
	Penetrometer	Test													
S PERTIE		n Test - blows required t	to drive 300mm after	seating drive											
		y mm within the Standa		-											
		y mm within the seating													
U	Indrained Shear Stre	ength (kN/m ²)													
Cal	lifornia Bearing Ra	tio													
NG SIZE	5			_											
In	ndex Letter	Nominal Di	iameter (mm)												
N		Borehole 75	Core 54												
N H		99	76												
P		120	92												
S		146	113			ndwater			1		e Informa	tion:	I	Chiselling D	
-				┛ ┃				Seale	ad (m	Don	th (m bgl)	Hole Dia (r	nm) Casing Dia (m	1.20 1	e (m) Duration (hh:m .30 01:00
					bgl)	(m Rose	e to (m After ogl) (mins)	Seale bg	gl)	۰ I	4.40	Hole Dia (r 200	200	m) 4.30 4	.40 01:00
									None encount		ipment:	Dando 2	000		
				Key Sheet	Rema	rks:	1		1	•		Shi	ft Data: GW (m bgl)	Shift 3/01/2022 08:00	Depth (m bgl) Re 0.00 Star
					Cable	ercussio	n borehole termi	nated at	4.40m bal.				Dry 1	3/01/2022 18:00	2.00 End
													Dry 1	4/01/2022 08:00	2.00 Star

pg	prior geotechn	ity _{ical}		T F	el: 021 4 ax: 021 4				Drilled By PC Logged By CS	Borehole N BH02 Sheet 1 of	
Projec	ct Name	e: Bessbo	ro SHD		oject No. 1239		Co-ords:	: 171742E - 703	95N	Hole Type CP	е
ocat	ion:	Mahon,	Cork				Level:	13.07 m	OD	Scale 1:50	
lient	:	Estuary	View E	nt. Ltd			Date:	10/01/2022	- 1	1/01/2022	
Nell ackfill	Water Strike	Sample	e and Ir	n Situ Testing	Depth (m bgl)		Legend	Stra			
	(m bgl)	Depth (m bgl) 0.00 - 1.00 1.00 - 2.00 1.00 2.00 - 3.00 2.00 - 3.00 3.00 - 4.00 3.00 - 4.00 3.00 - 4.00 5.00 - 6.00 5.00 - 6.00 6.00 - 7.00 6.00 - 7.00 8.00	Type B B SPT (C) SPT (C)	Results N=6 (1,1/1,1,2,2) N=7 (1,1/1,2,2,2) N=12 (3,3/2,3,3,4) N=12 (3,3/2,3,3,4) N=21 (4,4/5,5,6,5) N=24 (5,6/5,6,7,6) N=29 (6,6/7,7,8,7) N=33 (7,7/8,8,9,8) N=32 (7,8/9,5,9,9)	1.00	12.07 10.07 8.07		to sub-rounded. Dri Soft, brown red, slig Sand is fine to coar: angular to sub-roun clay. 2.00m - 3.00m: Dri Firm to stiff, brown i silty CLAY with low coarse. Gravel is fir rounded. Cobbles a dia 63-170mm dia. Stiff, brown red, slig with medium cobble Gravel is fine to coar	avel is fine to coarse ller describes: Grave phtly sandy slightly g se. Gravel is fine to ded. Driller describe <u>ller not</u> ed: Boulder <u>red</u> , slightly sandy sl cobble content. San te to coarse, sub-an, re sub-rounded, Linr htly sandy slightly g e content. Sand is fin irse, sub-angular to unded, limestone wit	e, sub-angular al clay. ravelly CLAY. cooarse, sub- s: Gravelly rs. ightly gravelly rs. ightly gravelly rs. ravelly CLAY ravelly CLAY re to coarse. sub-rounded.	- 1 2 - 3 4 - 5 6 7 8
								9 년 2010년 1911 1911 191			9
					9.10	3.97		End	of Borehole at 9.100m		1
i rour truck (bgl)		: e to (m After gl) (mins)	Seale	l) Comment	. De	ole Informa epth (m bgl) 9.10	tion: Hole Dia (I 200	mm) Casing Dia (mm 200	2.75 2.00	Duration (hh:mm) 01:00	Tool Chisel Chisel
27				None encounte		quipment:	Dando 2		1		
emar able p		n borehole termi	nated at	9.10m bgl.			Shi	10/ 11/	01/2022 08:00 0 01/2022 18:00 0 01/2022 08:00 0	(m bgl) Remar .00 Start of s .00 End of s .00 Start of s .10 End of bor	shift. shift. shift.

pg	prior geotechnic	ity		l	rity Geotech Tel: 021 463 Fax: 021 463 prioritygeot	1600 38690			Drilled By PC Logged By CS	BH03 Sheet 1 of	
Projec	t Name:	Bessbo	ro SHD		roject No. 21239		Co-ords:	171738E - 703		Hole Type CP	e
Locati	on:	Mahon,	Cork	F	21200		Level:	11.49 m (OD	Scale 1:50	
Client:		Estuary	View E	nt. Ltd			Date:	12/01/2022	- 1	12/01/2022	
14/-11	Water Strike	Sample		n Situ Testing	Depth	Level (mOD)	Legend	Stra	tum Description		
	(m bgl)	Depth (m bgl)	Туре	Results	(m bgl)	(mod)		Soft becoming firm,			_
		$1.00 - 2.00 \\ 1.00$ $2.00 - 3.00 \\ 2.00$ $3.00 - 4.00 \\ 3.00$ $4.00 - 5.00 \\ 4.00$ $5.00 - 6.00 \\ 5.00$ $6.00 - 7.00 \\ 6.00$	B SPT (C) B S (C) (C) B SPT (C) B S (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	N=7 (1,1/1,2,2,2) N=7 (1,1/2,2,1,2) N=10 (2,3/3,2,3,2) N=20 (3,4/4,5,5,6) N=26 (6,7/6,6,7,7) N=28 (7,6/6,8,7,7)	4.00 5.00 6.00	7.49 6.49 5.49		Stiff, brown red, slig Sand is fine to coars Stiff, brown red, slig with low cobble con sub-rounded, Limes Stiff, brown red, slig with low cobble con sub-rounded, Limes 6.00m - 8.40m: Dri	se. Gravel is fine to htly sandy slightly g tent. Cobbles are su tone with dia 63-800 htly sandy slightly g tent. Cobbles are su tone with dia 63-800	ravelly CLAY ib-angular to mm. ravelly CLAY ib-angular to nm.	
		7.00 - 8.00 7.00 8.00 - 8.40 8.00	B SPT (C) B SPT (C)	N=34 (7,8/8,9,8,9) 40 (9,10/40 for 150mm)			다 해 나 해 나 해 나 해 나 해 나 해 나 하 3. 너무 너무 너무 너무 너무 나 가 나 2. 너무 다 다 다 다 다 다 다 다 다 다 나 나 나 나 나 나 나 나 나				5
Groun Struck (bgl)			Seale	d (m Commer	nt Dep	3.09 e Informa th (m bgl) 8.40	tion: Hole Dia (m 200			Is: Duration (hh:mm) 01:00	Too Chise
					Equ	ipment:	Dando 20	GW (m bal)	Shift Depth	(m bgl) Remar	۲k۹
Remar l Cable pe		borehole termi	nated at	8.40m bgl.			Shif	t Data: 12/	01/2022 08:00 0	.00 Start of s .40 End of bor	shift

P21239 Falling head permeability test

Location BH ID Test Casing dia Casing de Borehole o GW Influe Date	pth depth	Bessborough SH BH03 1 200 2.00 2.20 2.20 12/01/2022	mm m		H _{w/} H _o	2.20	
Min	Sec	depth, m bgl	vol, cu.m	Ht	log H ₀ /H _t	1	
0	0	0.000	0.00000	2.200	0.000	1	
0.083	5	0.000	0.00000	2.200	0.000		
0.17	10	0.000	0.00000	2.200	0.000		
0.25	15	0.000	0.00000	2.200	0.000		
0.5	30	0.000	0.00000	2.200	0.000]	
0.75	45	0.000	0.00000	2.200	0.000]	
1	60	1.000	0.03140	1.200	-0.263		
1.5	90	1.400	0.04396	0.800	-0.439	k _{mean}	1.12E-03 ms ⁻¹
2	120	1.600	0.05024	0.600	-0.564	k _H = k _V	
3	180	1.900	0.05966	0.300	-0.865		
4	240	2.199	0.06905	0.001	-3.342		
		Rate of infiltr	ation				



pg	prior geotechni	ity _{ical}		T	ty Geotech Tel: 021 463 ax: 021 463 rioritygeot	1600 38690		Logg	ed By	Borehole No. BH04 Sheet 1 of 1
Projec	t Name	: Bessbor	ro SHD		oject No. 1239		Co-ords:	172026E - 70364N		Hole Type CP
.ocati	ion:	Mahon,	Cork				Level:	12.50 m OD		Scale 1:50
lient:	:	Estuary	View E	nt. Ltd			Date:	14/01/2022	- 14	4/01/2022
Vell Ickfill	Water Strike			n Situ Testing	Depth (m bgl)	Level (mOD)	Legend	Stratum De	scription	
	(m bgl)	Depth (m bgl) 1.00 - 2.00 1.00	B SPT (C)	Results N=9 (1,1/2,2,3,2)	1.00	11.50		Dark brown, slightly sandy sl plant material. Firm, dark brown, slightly sar Sand is fine to coarse. Grave	ndy slightly g	ravelly SILT.
		2.00 - 3.00 2.00	B SPT (C)	N=9 (2,2/2,3,2,2)	2.00	10.50		Firm, brown, slightly sandy slow cobble content. Sand is f fine to coarse, sub-angular to are sub-angular to sub-round 63-120mm.	fine to coars	e. Gravel is ed. Cobbles
		3.00 - 4.00 3.00	B SPT (C)	N=14 (2,3/3,4,3,4)	3.00	9.50		Firm to stiff, brown, slightly s: CLAY with low cobble conten Gravel is fine to coarse, sub- Cobbles are sub-angular to s with dia 63-120mm. Driller de	nt. Sand is fir angular to s sub-rounded	ne to coarse. ub-rounded. , Limestone
		4.00 - 5.00 4.00	B SPT (C)	N=22 (4,4/5,6,5,6)						
		5.00 - 6.00 5.00	B SPT (C)	N=29 (6,5/7,7,8,7)	5.00	7.50		Stiff, brown, slightly sandy sli with low cobble and boulder coarse. Gravel is fine to coar rounded. Cobbles are sub-ar Limestone with dia 63-70mm rounded, Limestone with dia	content. Sar se, sub-ang ngular to sub n. Boulders a	nd is fine to ular to sub- p-rounded,
		6.00 - 7.00 6.00 7.00	B SPT (C) SPT	N=37 (7,8/8,9,9,11) 75 (10,15/75 for	6.00	6.50		Stiff, brown, slightly sandy sli with low cobble content. San is fine to coarse, sub-angular are sub-angular to sub-round 63-90mm.	d is fine to c r to sub-rour	oarse. Gravel ded. Cobbles
			(C)	150mm)	7.30	5.20	<u>*************************************</u>	End of Borehol	e at 7.300m	
					.			Chisel	ling Details	s:
iroun truck (bgl)		to (m After gl) (mins)		ed (m Comment JI) None encounte	Dep ered.	e Informa th (m bgl) 7.30 ipment:	tion: Hole Dia (m 200 Dando 20	Top (m) Casing Dia (mm) 3.80 200 7.20 000. 1000) Base (m) 4.00 7.30	Duration (hh:mm) To 01:00 Chi 01:00 Chi
emar able pe		n borehole termir	nated at	7.30m bgl.			Shif	t Data: GW (m bgl) Shift 14/01/2022 Dry 14/01/2022		00 Start of shi

pç	prior geotechn	ity _{ical}		Te Fa	el: 021 4 ax: 021 4				Drilled By PC Logged By CS	Borehole No BH05 Sheet 1 of 1	
roje	ct Name	e: Bessbor	o SHD		oject No 1239		Co-ords:	172034E - 703	301N	Hole Type CP	
ocat	ion:	Mahon,	Cork				Level:	12.21 m	OD	Scale 1:50	
ient	:	Estuary	View E	nt. Ltd			Date:	17/01/2022	_	17/01/2022	
ell kfill	Water Strike	•		n Situ Testing	Depth (m bg		Legend	Stra	atum Description	1	
	(m bgl)	Depth (m bgl) 0.00 - 1.00	Type B	Results	(in bg	i) (iii00)			, brown red, slightly		
		1.00 - 2.00 1.00 2.00 - 3.00	B SPT (C) B	N=8 (1,1/2,2,2,2)				gravelly CLAY. San coarse, sub-angula	d is fine to coarse. G	Sravei is tine to	
		3.00	SPT (C)	N=13 (2,3/3,4,3,3)							
		4.00 - 5.00 4.00	B SPT (C)	N=16 (3,4/3,4,4,5)							
		5.00 - 6.00 5.00	B SPT (C)	N=30 (5,6/7,7,8,8)	5.00	7.21		with low cobble cor is fine to coarse, su	ghtly sandy slightly g ntent. Sand is fine to ib-angular to sub-rou sub-rounded, 63-120 /.	coarse. Gravel unded. Cobbles	
		6.00 - 7.00 6.00 7.00	B SPT (C) SPT (C)	N=38 (7,8/9,9,10,10) 90 (9,10/90 for 225mm)	6.00	6.21		with low cobble cor is fine to coarse. G to subrounded. C rounded, 63-120m	ghtly sandy slightly g ttent and low boulde ravel is fine to coars obbles are sub-angu n dia., Limestone litt ngular, 200-250mm	r content. Sand e, sub-angular ilar to sub- nology.	
					7.40	4.81		End	of Borehole at 7.400n	n	
	dwata-				_ ,,				Chiselling Detai		
our uck bgl)		: e to (m After ggl) (mins)	Seale		red.	ole Informa Depth (m bgl) 7.40 quipment:	Hole Dia (n 200	200	Top (m) Base (m)	Duration (hh:mm) 1 01:00 Cl	Too his his
ma i ble p		n borehole termi	nated at	7.40m bgl, obstruction.			Shi		/01/2022 08:00 0	h (m bgl) Remark 0.00 Start of sh 7.40 End of bore	hift

P21239	Falling h	ead permeability te	est
Location BH ID Test Casing dia Casing de Borehole o GW Influe Date	epth depth	Bessborough SH BH05 1 200 1.50 2.00 2.00 17/01/2022	mm m

Min	S	ec	depth, m bgl	vol, cu.m	H _t	log H ₀ /H _t		
0		0	0.000	0.00000	2.000	0.000		
0.08	3	5	0.000	0.00000	2.000	0.000		
0.17	7	10	0.000	0.00000	2.000	0.000		
0.25	5	15	0.000	0.00000	2.000	0.000		
0.5		30	0.000	0.00000	2.000	0.000		
0.75	5	45	0.000	0.00000	2.000	0.000		
1		60	0.000	0.00000	2.000	0.000		
1.5		90	0.000	0.00000	2.000	0.000	k _{mean} -	ms ⁻¹
2		120	0.000	0.00000	2.000	0.000	k _H = k _v	
3		180	0.000	0.00000	2.000	0.000		
4		240	0.000	0.00000	2.000	0.000		
5		300	0.000	0.00000	2.000	0.000		
10		600	0.000	0.00000	2.000	0.000		
15		900	0.000	0.00000	2.000	0.000		
20		1200	0.000	0.00000	2.000	0.000		
25		1500	0.000	0.00000	2.000	0.000		
30		1800	0.000	0.00000	2.000			
45		2700	0.000	0.00000	2.000			
60		3600	0.000	0.00000	2.000	0.000		
μ/ ₀ Η	0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70		500 1000 1500	2000 2500	3000 350			
	-							

Notes:

2.00

No Change in groundwater level observed after 60 mins. Infiltration rate mot determined.

pg	prior geotechn	rity		ן F www.p	ty Geotech fel: 021 463 ax: 021 463 prioritygeot	31600 38690			Drilled By PC Logged By CS	Borehole N BH06 Sheet 1 of) F 1
Projec	t Name	e: Bessbo	ro SHD		oject No. 1239		Co-ords:	171946E - 703	338N	Hole Typ CP	e
ocati	on:	Mahon,	Cork				Level:	13.57 m	OD	Scale 1:50	
lient		Estuary	View E	nt. Ltd			Date:	13/01/2022	-	13/01/2022	
Well ackfill	Water Strike	-		n Situ Testing	Depth (m bgl)	Level (mOD)	Legend	Stra	atum Description	l	
	(m bgl)	Depth (m bgl) 0.00 - 1.00 1.00 - 2.00 1.00 2.00 - 3.00 2.00 3.00 - 4.00 3.00 4.00 - 5.00 4.00 5.00 - 6.00 5.00 6.00 - 7.00	Type B B SPT (C) B SPT (C) B SPT (C) B SPT (C) B SPT (C) B SPT (C)	Results N=6 (1,1/2,2,1,1) N=8 (1,1/2,2,2,2) N=9 (2,2/3,2,2,2) N=13 (3,2/3,3,4,3) N=28 (4,6/6,7,7,8) N=33 (7,7/8,8,9,8)	6.00	12.57		4.00m - 6.00m: Dr	brown red, slightly s Sand is fine to coars angular to sub-round iller described: 'we ghtly sandy slightly g ble content. Sand is f arse, sub-angular to ngular, limestone with	se. Gravel is ded. ht' soils.	- 1 2 3 4
	dwater					6.57 e Informa			5.75 5.05	ils: Duration (hh:mm)	Tool
truck (bgl)		e to (m After ogl) (mins)	Seale bg		ered.	th (m bgl) 7.00	Hole Dia (m 200 Dando 20	200	n) 5.75 5.95 6.90 7.00		Chise Chise
emar able p		n borehole termi	nated at	7.0m bgl.	IE40			it Data: ^{GW (m bgl)} 13	8/01/2022 08:00 0	n (m bgl) Rema 1.00 Start of 5 1.00 End of bor	shift

pgl _p	priority eotechnical			v	Priority Tel Fax www.prio
Project Name:	Bessboro Sł	HD		Proje P212	ct No. 39
Locatior	n: Mahon, Co	rk			
Client:	Estuary Vie	w Ent.	Ltd		1
Water Strike & Backfill	Samp Depth (m)	les & In S	Situ Testing Results	Depth (m)	Level (m OD)
				0.20	16.40
	0.70 - 1.50 0.70 - 1.50	B D		0.65	15.95
	1.50 - 2.50 1.50 - 2.50	B D			
	2.50 - 3.50 2.50 - 3.50	B D			
				3.90	12.70
Stability: Plant: Backfill:	14T track mach Arisings.		90m bgl on rock/ larg		

G	eotechr	nical Ltd.	Trial Pit No						
	021 4631 021 463		TP01						
		chnical.ie	Sheet 1 of 1						
		Co-ords:171822E - 70467N	Date						
		Level: 16.60m OD	11/01/2022						
		Dimensions (m):	Scale						
		Depth: 	1:25 Logged						
		3.90m BGL	OD						
)	Legend	Stratum Description							
		(TOPSOIL) Soft to firm, brown, slightly sandy s							
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to coarse, sub-rounded to							
		rounded. (MADE GROUND) Soft to firm, brown, slightly s	sandy						
		slightly gravelly CLAY with pottery fragments, b timber and plastics. Sand is fine to coarse, Gra							
		fine to coarse, sub-rounded to rounded.	-						
	<u>=0</u>	Soft to firm becoming stiff from 2.80m, brown, s	lightly						
	ČČ×Q	sandy slightly gravelly CLAY with medium cobb	le –						
	<u> </u>	content and low boulder content. Sand is fine to Gravel is fine to coarse, sub-rounded to rounde	. –						
	<u> </u>	Cobbles are sub-rounded to rounded. Boulders rounded to rounded. (Assumed Natural).	sub- 1 -						
	<u> </u>								
	<u> </u>		-						
	¢&&0		-						
	¢òx ò		-						
	¢à%ó		-						
	¢xx Ó		-						
	¢xx Ó		-						
	¢~~0		-						
	<u> </u>		2 -						
	¢x*0		-						
			-						
			-						
		ር 							
	¢x×v		-						
	¢xxo		-						
			-						
	¢xxo		3 -						
	\$ <u>~</u> ~0	ସି ଜୁନ							
		4 							
		4	-						
			-						
	<u>~</u> V^~?X &&~~		-						
	<u>~</u> V^~?X &&~~								
	10000 ×	End of Pit at 3.900m							
			4 -						
			-						
			-						
			5 —						
0	Groundwa	ater: None encountered.							
	······								

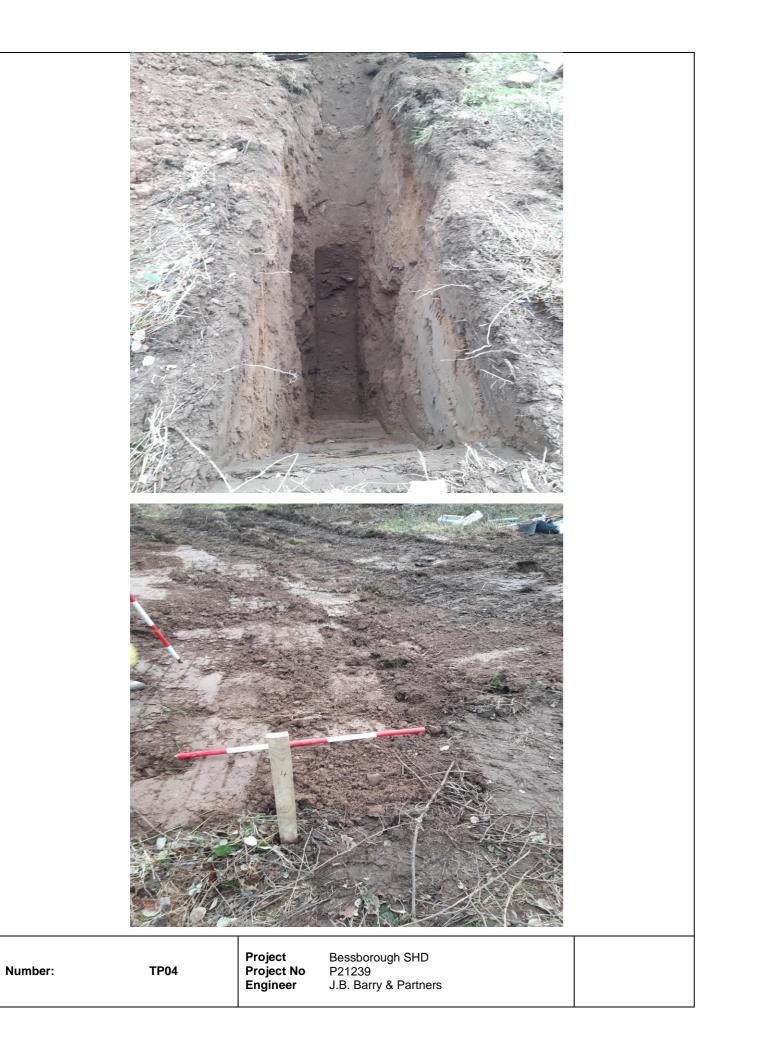
			<image/>	
Number:	TP01	Project Project No Engineer	Bessborough SHD P21239 J.B. Barry & Partners	

pgl _{ge}	riority ^{otechnical}				Priority (Tel: Fax: www.prior	
Project Name:	Bessboro Sł	HD		Proje P212	ct No. 39	
Location	: Mahon, Co	rk				
Client: Estuary View Ent. Ltd 능 했글 Samples & In Situ Testing Denth Lavel						
Water Strike & Backfill	Samp Depth (m)	les & In Situ Type	r Testing Results	Depth (m)	Level (m OD)	
				0.30	12.74	
	0.50 - 1.00 0.50 - 1.00	B D				
	1.20 - 2.30 1.20 - 2.30	B D		1.20	11.84	
	2.30 - 3.20 2.30 - 3.20	B D		2.30	10.74	
				3.20	9.84	
Stability: Plant: Backfill:	14T track mach	ine				

G	eotechr	nical Ltd.	Trial Pit No
	021 4631 021 463		TP02
		chnical.ie	Sheet 1 of 1
		Co-ords: 171743E - 70394N	Date
		Level: 13.04m OD	10/01/2022
		Dimensions (m):	Scale
		Depth: 	1:25 Logged
		3.20m BGL	OD
)	Legend	Stratum Description	
		(TOPSOIL) Soft to firm, brown, slightly sandy sl	lightly _
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to coarse, sub-rounded to	
		rounded. (MADE GROUND) Soft to firm, light brown, slig	-
		sandy slightly gravelly SILT with medium cobble	e -
		content, medium boulder content and pottery fragments. Sand is fine to coarse. Gravel is fine	
		coarse, sub-angular to rounded. Cobbles are an sub-rounded. Boulders are angular to sub-roun	
		Soft, light purple brown, slightly gravelly silty SA	AND.
	× × × × × × ×	Sand is fine to coarse. Gravel is fine to coarse, angular to rounded.	
	× × ×		
	× × × ×	34 	
	× × × ×		
	`* * * * * * * *		-
	$\times \times $		2 -
	× × × ×		
	×××××		
	Ŏ÷Ŏ÷	Soft to firm, purple brown, slightly sandy gravel with medium cobble content and medium bould	
		content. Sand is fine to coarse. Gravel is fine to sub-rounded to rounded. Cobbles are sub-roun	coarse,
		rounded. Boulders are sub-rounded to rounded	
	0-0-0		
	0.0		
			3 —
		End of Pit at 3.200m	
			5 —
0	Groundwa	ater: None encountered.	

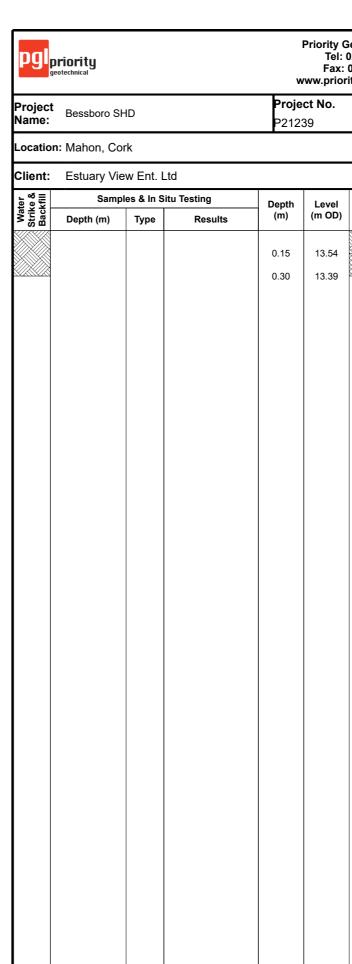
Pyip	eotechnical				Tel: Fax: ww.prio
Project Name:	Bessboro Sl	HD		Proje P212	ct No. 39
Locatior	n: Mahon, Co	ork			
Client:	Estuary Vie				1
Water Strike & Backfill	Samp Depth (m)	Type	Results	Depth (m)	Level (m OD)
	0.50 - 1.50 0.50 - 1.50	B D	results	0.35	11.45
	1.50 - 2.50 1.50 - 2.50	B D		1.10	10.70
	2.50 - 3.50 2.50 - 3.50	B D			
	3.50 - 4.50 3.50 - 4.50	B D			
				4.50	7.30
	Moderate 14T track mach				<u> </u>

G	Geotechr	nical Ltd.	Trial Pit	No
	021 4631 021 463		TP0	3
		chnical.ie	Sheet 1	of 1
		Co-ords:171737E - 70314N	Date	
		Level: 11.80m OD	11/01/20	
		Dimensions (m): 3.80	Scale 1:25	•
		Depth: 1	Logge	d
		4.50m BGL	ŐĎ	
	Legend	Stratum Description		
<u></u>		(TOPSOIL) Soft, dark brown, slightly sandy slig	bthy	
		gravelly SILT with grass and rootlets. Sand is fi	ne to	-
		coarse. Gravel is fine to coarse, sub-angular to rounded.		-
		(MADE GROUND) Soft to firm, purple brown, s	lightly	-
		sandy gravelly CLAY with medium cobble conte rare pottery and glass fragments. Sand is fine to	ent and o	
		coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.		-
				-
				-
				1 -
		(ASSUMED NATURAL) Soft to firm, purple brow slightly sandy gravelly CLAY with medium cobb	wn, Ie	-
		content. Sand is fine to coarse. Gravel is fine to	coarse,	-
		sub-rounded to rounded. Cobbles are sub-roun rounded.	ded to	-
	<u>~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
	<u>~~~~</u>			-
	<u>~~~~</u>			-
	¢x×v			-
	¢xxx			2 —
	<u> </u>			-
	<u>ČČČ</u> Č			
	<u> </u>			-
	<u> </u>			-
				-
				-
				3 —
				5 -
				-
	<u>~~~~</u>			-
	¢xxx			-
	¢xxx			-
	\$ <u>8</u> \$\$\$0			-
	2000			
	<u> </u>			4 —
	<u>¢òx ò</u>			-
				-
				-
	<u>~0× 9</u> /	End of Pit at 4.500m		
				-
				-
				5 —
(Groundwa	ater: None encountered.		



ge	riority otechnical				Fax: www.prior		
Project Name:	Bessboro Sł	HD		Proje P212	ct No. 39		
ocation: Mahon, Cork							
Client:	Estuary Vie	ew Ent. Lto	ł				
water Strike & Backfill	Samp Depth (m)	les & In Situ Type	Results	Depth (m)	Level (m OD)		
,				0.30	12.05		
	0.50 - 1.50 0.50 - 1.50	BD		0.70	11.65		
	1.50 - 2.50 1.50 - 2.50	BD		1.50	10.85		
	2.50 - 3.50 2.50 - 3.50	B D					
	3.50 - 4.50 3.50 - 4.50	B D					
bility:	Moderate 14T track mach			4.50	7.85		

		nical Ltd.	Trial Pit No
)21 4631 021 463		TP04
or	itygeote	chnical.ie	Sheet 1 of 1
		Co-ords:172027E - 70362N	Date
		Level: 12.35m OD	13/01/2022
		Dimensions (m):	Scale
		Depth: -	1:25 Logged
		4.50m BGL	OD
	Legend	Stratum Description	
)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		(TOPSOIL) Soft to firm, brown, slightly sandy sl gravelly SILT with grass and rootlets. Sand is fil	ne to
		coarse. Gravel is fine to medium, sub-angular t rounded.	o sub-
		(MADE GROUND): Soft, brown slightly silty slig gravelly SAND with plastic waste. Sand is fine t	ihtly
		coarse. Gravel is fine to coarse, sub-rounded to rounded.	
		Tounded.	
	XXX	(ASSUMED NATURAL): Soft, brown, slightly si slightly gravelly SAND. Sand is fine to coarse. (lty .
	×××× ××××	fine to coarse, sub-rounded to rounded.	
	. × . × × . × . ×		1 -
	* * * * * * * *		
	× × × × × × ×		
	× ^ × × × ×		
		Soft to firm, slightly sandy slightly gravelly CLA	
		low cobble content. Sand is fine to coarse. Gra- fine to coarse, sub-rounded to rounded. Cobble	
		sub-rounded to rounded.	
			2 -
			-
			-
			-
			3 -
			-
			-
			-
		्र 2017	-
			-
			4 -
		End of Pit at 4.500m	
			-
			5
7	Proundar		5 -
ľ	BIOUNDW	ater: 3.90m: Trickle rate of flow	
L			



Project Name:	Bessboro SI	HD		Proje	ww.prio
	n: Mahon, Co	rk		P212	39
Client:	Estuary Vie		Ltd		
ter kfill			Situ Testing	Depth	Level
Water Strike & Backfill	Depth (m)	Туре	Results	(m)	(m OD)
				0.30	11.91
	0.70 - 1.50 0.70 - 1.50	B D		0.70	11.51
	1.50 - 2.50 1.50 - 2.50	B D			
	2.50 - 3.50 2.50 - 3.50	B D			
•	3.50 - 4.50 3.50 - 4.50	B D			
				4.50	7.71
Stability: Plant: Backfill:	Good 14T track mach Arisings.	ine			

G	eotechr	nical Ltd.	Trial Pit	No
	021 4631 021 463		TP0	5
		chnical.ie	Sheet 1	of 1
		Co-ords:172034E - 70303N	Date	
		Level: 12.21m OD	14/01/20	
		Dimensions (m):	Scale 1:25	
		Depth: 1	Logge	
		4.50m BGL	ŐĎ	
	Legend	Stratum Description		
		(TOPSOIL) Soft to firm, brown, slightly sandy sl	lightly	_
		gravelly SILT with grass and rootlets. Sand is fin coarse. Gravel is fine to medium, sub-angular t	ne to	-
		rounded.		-
		(MADE GROUND) Soft to firm, brown orange, s sandy gravelly CLAY. Sand is fine to coarse. Gr		-
		fine to coarse, sub-rounded to rounded.		-
		F . (1976)		-
	<u> </u>	Firm to stiff, purple brown, slightly sandy slightly gravelly CLAY with medium cobble content and	low	-
		boulder content. Sand is fine to coarse. Gravel coarse, sub-rounded to rounded. Cobbles are s		-
		rounded to rounded. Boulders are sub-rounded rounded. (Assumed Natural).	to	1
				-
	<u>~~~~</u>	ि जि में 1		-
	\$X\$\$Q			-
	ČČČQČ			-
	<u> </u>			-
	<u> </u>			-
	<u> </u>			2 —
				-
				-
				-
	<u>~0×-74</u> .&.2.014			-
				-
	ČĂŽ Ó			-
	ČČ [×] O			-
	<u> </u>			3 —
	<u> </u>			-
				-
				-
				-
	$\sim \sim \sim \sim$			-
	¢xxx			- - 1 -
	<u> </u>			4 -
	ČČ ^Č O			-
	<u>×ò×ò</u>	977 T		-
	<u> </u>	End of Pit at 4.500m		
				-
				-
				5 —
C	Groundwa	ater: 3.90m: Slow rate of flow		

 Stability:
 Good

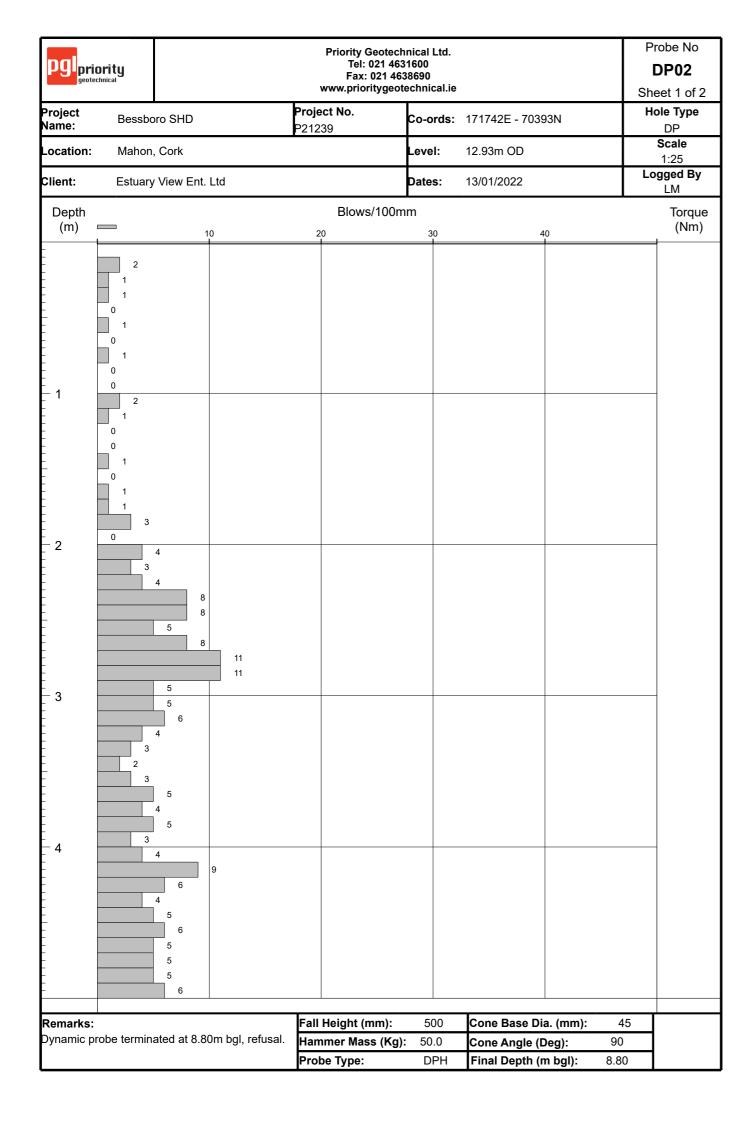
 Plant:
 14T track machine

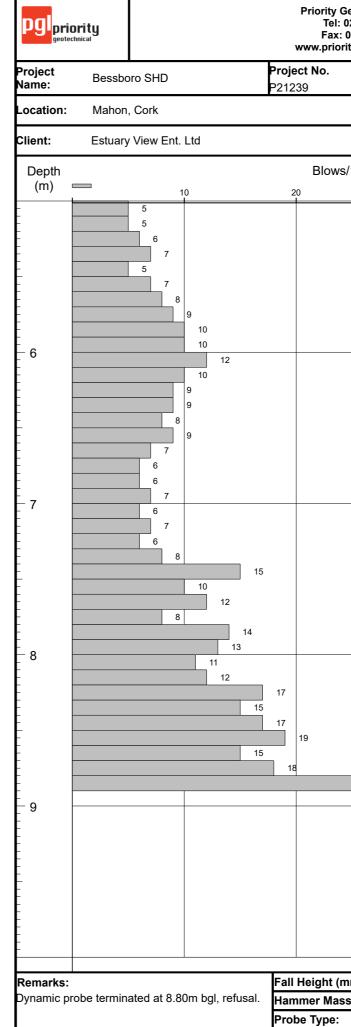
 Backfill:
 Arisings.

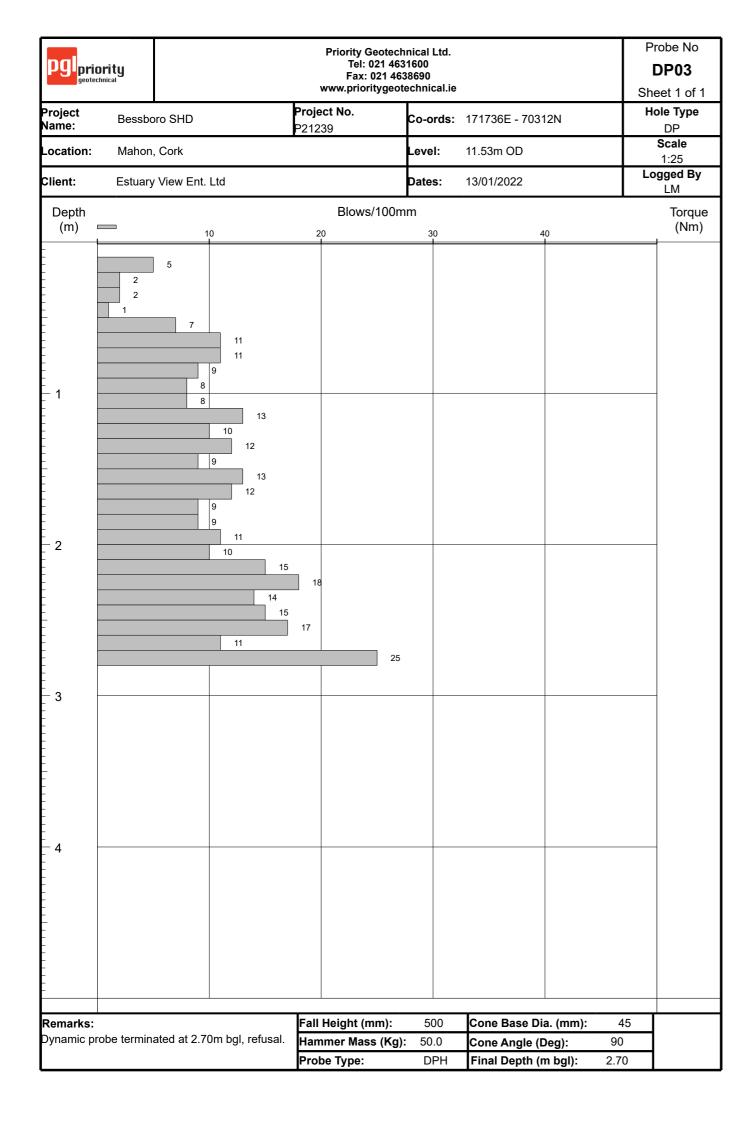
 Remarks:
 Trial pit terminated at 0.30m bgl, due to encountering a concrete sla

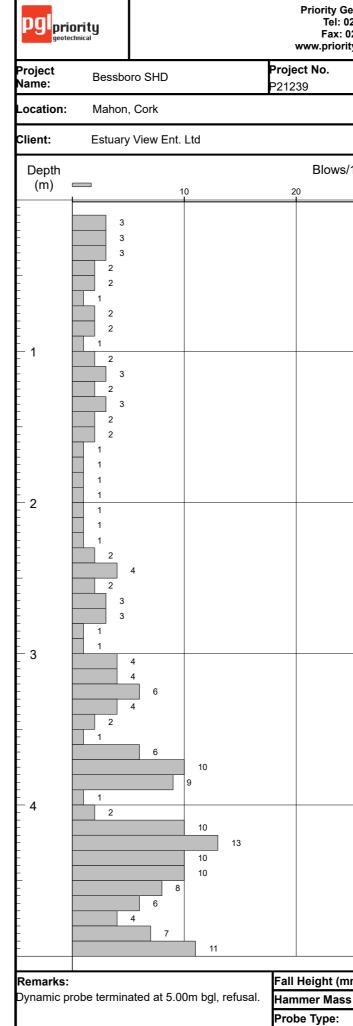
Number		Project Broject No.	Bessborough SHD		
Number:	TP05	Project Project No Engineer	Bessborough SHD P21239 J.B. Barry & Partners		

G	eotechr	nical Ltd.	Trial Pit	No
(021 4631 021 463	600	TP06	5
or	itygeote	chnical.ie	Sheet 1 d	of 1
		Co-ords: 171941E - 70338N	Date	
		Level: 13.69m OD	12/01/20	
		Dimensions (m):	Scale 1:25	
		Depth: 	Logge	d
		0.30m BGL	ŐĎ	
	Legend	Stratum Description		
		(TOPSOIL) Soft to firm, slightly sandy slightly g	ravelly	_
		SILT with grass and rootlets. (MADE GROUND) Firm to stiff, light blue grey,		-
		sandy gravelly CLAY. Sand is fine to coarse. Gr fine to coarse, sub-angular.	avel is	-
		Concrete Slab - drain/sewer access cover. End of Pit at 0.300m	/	-
				-
				-
				-
				1
				-
				-
				-
				-
				-
				-
				2 —
				-
				-
				-
				-
				-
				-
				-
				3 —
				-
				-
				-
				-
				-
				-
				4 —
				-
				-
				-
				-
				-
				-
				5 —
ľ	sroundwa	ater: None encountered.		
L ab	covering	an apparent un-used drain. Pit relocated.		
	serenny			

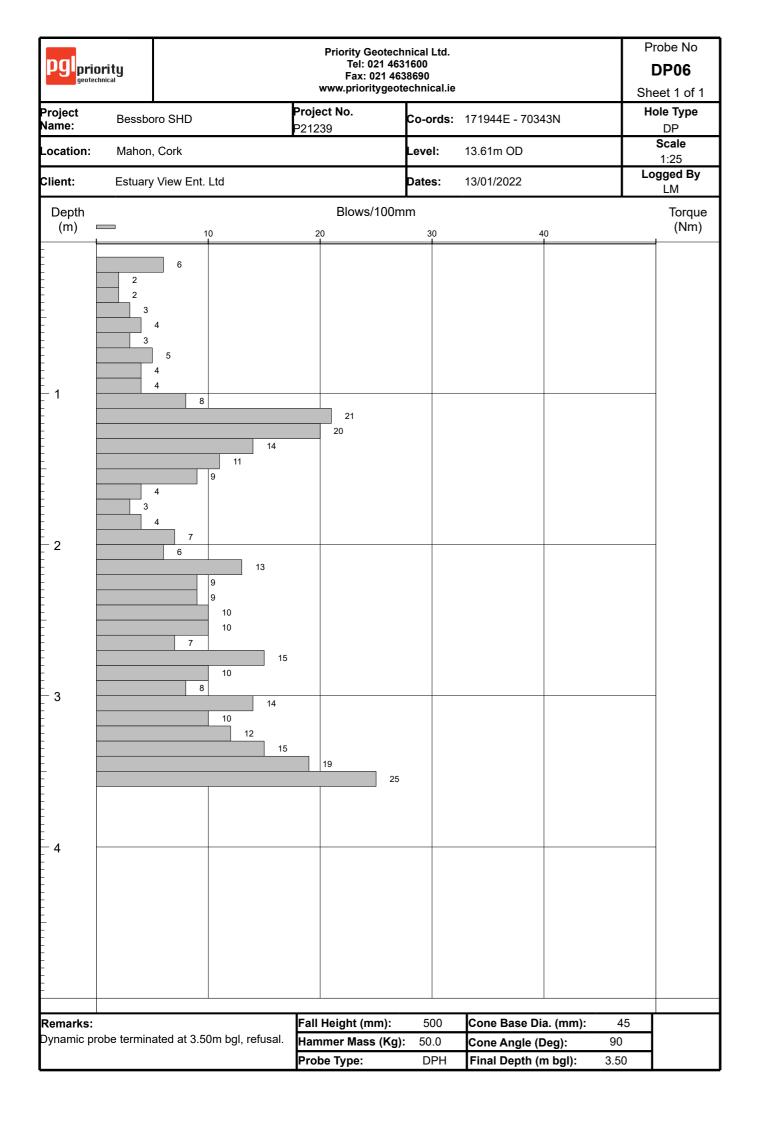

pgl _p	priority eotechnical				Priority Te Fa /ww.pr
Project Name:	Bessboro Sl	HD		Proje P212	ct No . 39
Locatior	n: Mahon, Co	ork			
Client:	Estuary Vie	ew Ent. Lto	ł		
Water Strike & Backfill	Samp	les & In Situ	ı Testing	Depth	Leve
Strik Bacl	Depth (m)	Туре	Results	(m)	(m Ol
	0.50 - 1.45 0.50 - 1.45	B D		0.10	13.5
	1.50 - 2.50 1.50 - 2.50	B D		1.45	12.1
	2.50 - 3.50 2.50 - 3.50	B D			
×	3.50 - 4.50 3.50 - 4.50	B D			
				4.60	9.0*
Stability: Plant:	14T track mach	nine			
Backfill:	Arisings. Trial pit termin				


Ģ	Geotechi	Trial Pit No							
: (021 4631 021 463	TP06A							
	itygeote	Sheet 1 of 1							
		Date							
		Level: 13.61m OD	12/01/2022						
		Dimensions (m):	Scale 1:25						
		Depth: -	Logged						
		4.60m BGL	OD						
)	Legend	Stratum Description							
		(TOPSOIL) Soft to firm, slightly sandy slightly gravelly SILT with grass and rootlets.							
		(MADE GROUND) Soft to firm, slightly sandy s	lightly						
		gravelly CLAY with low cobble content and was (pottery fragments, glass, plastics). Sand is fine	to						
		coarse. Gravel is fine to coarse, sub-rounded to rounded. Cobbles are sub-rounded to rounded.							
			-						
			-						
			-						
		Soft to firm, slightly sandy slightly gravelly CLA low cobble content. Sand is fine to coarse. Grav	vel is -						
		fine to coarse, sub-rounded to rounded. Cobble sub-rounded to rounded.	s are						
			-						
			-						
		27 P	2 -						
		े वि - <u></u>	-						
			-						
			-						
	× × × ×		-						
			-						
			-						
			-						
			3 -						
			-						
			-						
			-						
			_						
		<u>: 121 년 121 년</u>	-						
		<u>्रि</u>	-						
			4 -						
			-						
	<u>~~</u> ×~×	End of Pit at 4.600m							
			-						
			5 —						
1	Groundw	ater: 3.10m: Trickle rate of flow	I						

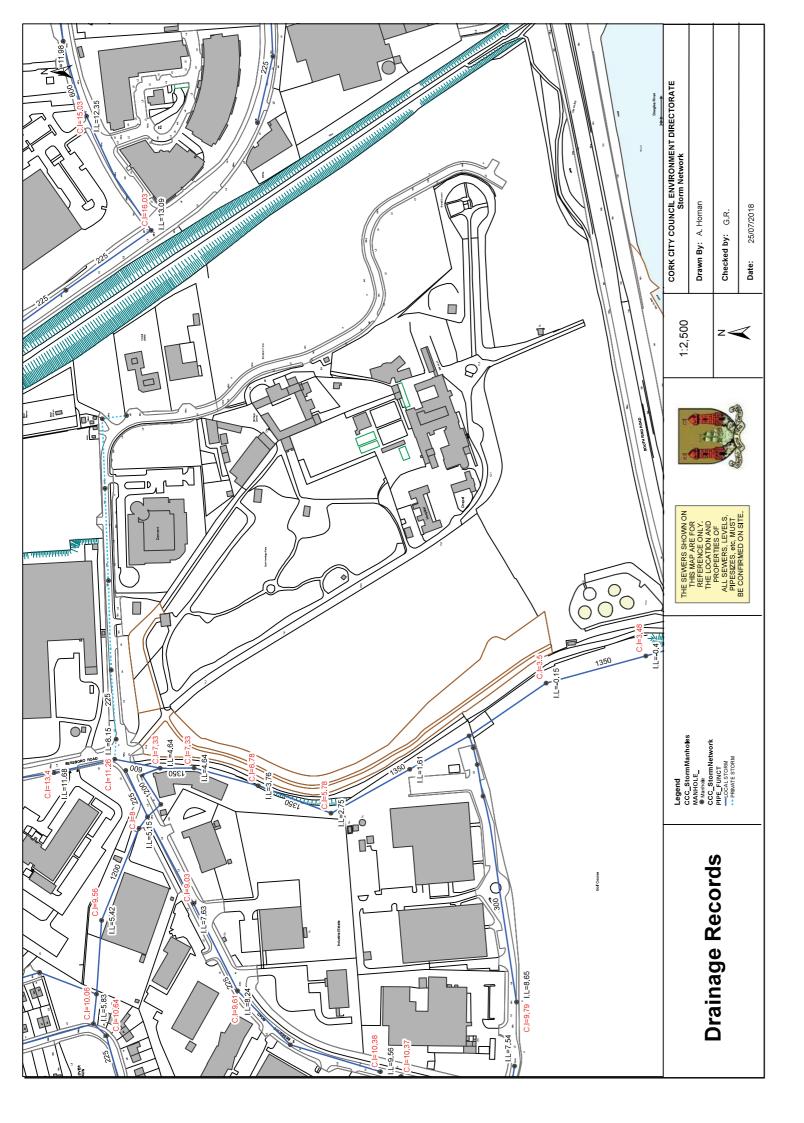



pgl _{prior}	rity _{Nical}	Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie					Probe No DP01 Sheet 1 of 1	
Project Name:	Bessboro SHD		Project No. P21239	Co-ords:	171822E - 70465	5N	Hole Type DP	
ocation:	Mahon, Cork			Level:	16.54m OD		Scale 1:25	
Client:	Estuary View Ent.	Ltd		Dates:	13/01/2022		Logged By LM	
Depth			Blows/1	100mm			Torque (Nm)	
(m) =		10	20	30	40			
- 1	2 1 2 2 5 8 4 2 1 1 1 2 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2							
- 3	2 4 7	15 11 1 1 1 1 1 5	6] 18 17	25				
- 4 -								
Remarks:			Fall Height (mr	m): 500	Cone Base Dia	. (mm): 45		
	be terminated at 3.7	0m bgl, refusal.	Hammer Mass	(Kg): 50.0	Cone Angle (De	eg): 90		
			Probe Type:	DPH	Final Depth (m	bgl): 3.70		

				-	
021 463 021 463	8690				obe No 0 P02
ritygeote	echnical.ie			She	eet 2 of 2
	Co-ords:	171742E - 7039)3N	Ho	DP
	Level:	12.93m OD			Scale 1:25
	Dates:	13/01/2022		Lo	gged By LM
s/100m	m				Torque
	30	4	0		(Nm)
25					
mm):	500	Cone Base Di	a. (mm):	45	
ss (Kg):		Cone Angle (
	DPH	Final Depth (r		0	



				1	
Geotechi 021 463	nical Ltd.				obe No
021 463	8690			[DP04
ritygeote	echnical.ie				et 1 of 2
	Co-ords:	172028E - 7036	4N	Ho	DP
		12.40			Scale
	Level:	12.40m OD			1:25
	Dates:	13/01/2022			gged By LM
s/100m	m				Torque
	30	40)		(Nm)
mm):	500	Cone Base Dia	. (mm):	45	
ss (Kg):		Cone Angle (D			
	DPH	Final Depth (m		00	


pgl priol	rity		Tel: 02 Fax: 02	otechnical Ltd. 1 4631600 1 4638690 geotechnical.ie		Probe No DP04 Sheet 2 of 2
Project Name:	Bessboro	SHD	Project No. P21239	Co-ords:	172028E - 70364N	Hole Type DP
Location:	Mahon, C	Cork		Level:	12.40m OD	Scale 1:25
Client:	Estuary V	iew Ent. Ltd		Dates:	13/01/2022	Logged By LM
Depth (m) =			Blows/1	00mm		Torque (Nm)
-		10	20	30 25	40	
6						
7 -						
8 -						
9 -						
Remarks:	he terminate	ed at 5.00m bgl, refusal.	Fall Height (mn		Cone Base Dia. (mm):	45
		a a o.oom by, reiusal.	Hammer Mass Probe Type:	(Kg): 50.0 DPH	Cone Angle (Deg): Final Depth (m bgl):	90 5.00

Project Name: Bessboro SHD Project No. P21239 Co-ords: 172034E - 70305N H Location: Mahon, Cork Level: 12.21m OD 12.21m OD	Probe No DP05 Sheet 1 of 1			1600 8690	Priority Geoto Tel: 021 Fax: 021 www.priorityg		rity	pgl _{prior}
Silent: Estuary View Ent. Ltd Pates: 14/01/2022 Ltd Depth 10 20 30 40 1 5 5 10 10 2 6 7 5 10 5 10 12 1 10 3 5 6 7 10 3 7 5 10 10 4 10 20 22 10 3 7 5 10 10 3 7 20 22 3 7 5 10 10 10 20 22 3 7 20 22 3 7 20 22 3 7 20 22 3 7 20 21	Hole Type DP	5N	172034E - 7030	Co-ords:			Bessboro	Project Name:
Depth Blows/100mm (m) 10 20 30 40 1 5 5 2 2 9 12 1 4 4 2 2 9 12 1 4 4 4 4 3 5 5 5 1 0 6 7 5 5 5 1 0 7 5 7 5 5 1 0 7 5 7 5 5 1 0 7 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Scale 1:25		12.21m OD	Level:		Cork	Mahon, Co	ocation:
(m) -10 20 30 40 1 5 5 4 4 4 4 4 4 4 4 4 4	Logged By LM		14/01/2022	Dates:		View Ent. Ltd	Estuary Vi	Client:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Torque (Nm)							
					20 22	5 4 9 12 5 4 4 4 5 6 7 5 6 7 5 10 8 11 12 16		2
Fall Height (mm): 500 Cone Base Dia. (mm): 45 Oynamic probe terminated at 3.00m bgl, refusal. Hammer Mass (Kg): 50.0 Cone Angle (Deg): 90							he terminet-	

CORK CITY COUNCIL - EXISTING STORMWATER NETWORK

Appendix 8:

HR WALLINGFORD - GREENFIELD RUNOFF ESTIMATION

Greenfield runoff rate

estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Diarmuid O'Brien		Site Details	
Site name:	Phase 2 - Bessboro SHD		Latitude:	51.88555° N
Site location:	Bessboro, Blackrock, Cork.		Longitude:	8.41036° W
in line with Environme	of the greenfield runoff rates that are used ent Agency guidance "Rainfall runoff mana	gement for developments",	Reference:	1797377310
(Defra, 2015). This inf	ne SuDS Manual C753 (Ciria, 2015) and the formation on greenfield runoff rates may be ce water runoff from sites.		Date:	Feb 14 2022 11:01

Runoff estimation approach IH124

Site characteristics					Notes
Total site area (ha): 1.4	48				(1) Is Q _{BAR}
Methodology					
Q _{BAR} estimation metho	d: Calcu	ulate f	rom SPR a	and SAAR	When Q _B
SPR estimation method	l: Calcu	ulate f	rom SOIL	type	at 2.0 l/s/
Soil characteristics	Defau	llt	Edite	ed	
SOIL type:	4		4		(2) Are flow
HOST class:	N/A		N/A		
SPR/SPRHOST:	0.47		0.47		Where flo usually se
Hydrological charac	teristics	C)efault	Edited	materials where the
SAAR (mm):		110)6	1106	drainage
Hydrological region:		13		13	(3) Is SPR/
Growth curve factor 1 y	ear:	0.8	5	0.85	
Growth curve factor 30	years:	1.6	5	1.65	Where gr
Growth curve factor 10) years:	1.9	5	1.95	soakaway preferred
Growth curve factor 20) years:	2.1	5	2.15	

(1) Is Q_{BAR} < 2.0 l/s/ha?

/hen Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set : 2.0 l/s/ha.

) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is sually set at 5.0 l/s if blockage from vegetation and other naterials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate rainage elements.

3) Is SPR/SPRHOST ≤ 0.3 ?

/here groundwater levels are low enough the use of bakaways to avoid discharge offsite would normally be referred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	12.2	12.2
1 in 1 year (l/s):	10.37	10.37
1 in 30 years (l/s):	20.13	20.13
1 in 100 year (l/s):	23.79	23.79
1 in 200 years (l/s):	26.24	26.24

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

Ok, I agree

More

By clicking the Accept button, you agree to us doing so.

CORK CITY COUNCIL CORRESPONDENCE

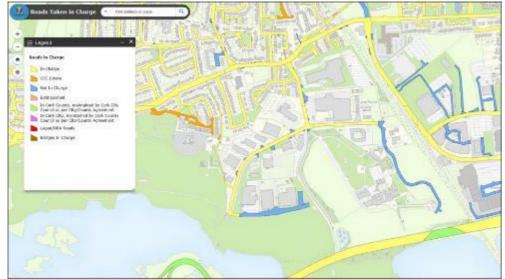


Figure 3. – Status of Taken in Charge / Not in Charge Roads in the Vicinity of the Bessboro SHD Site.

3.4.14.2 Sustainable Urban Drainage Systems (SuDS) & Stormwater:

The report of the Senior Executive Engineer from the Drainage Section states that:

"I note the applicant's proposal to use Q100 instead of Qbar as the greenfield run-off rate. This is acceptable, considering the proximity of the development to outfall to the estuary and the size of the existing outfall pipe at 1350mm. This approach is in line with that taken on other previously proposed developments within the Bessboro site. I have checked the Q100 estimate against my own estimate from the uksuds.com website and I am satisfied it is accurate.

I am pleased to see interception storage being provided for up to 5mm of rainfall...this will have a positive impact on downstream water quality, avoiding the "first flush" which would otherwise be reliant solely on an oil interceptor.

I am pleased to see the number of SuDS measures proposed and would request that design / drawing details are submitted as part of the application for each of the measures proposed. I would request in particular details of how the bio-retention areas are intention to function.

I note from Section 4.3.4 of the Infrastructure Report that it is proposed to discharge surface water from the car park via an interceptor to the storm line (as shown on drawing 21207-JBB-PH1-XX-DR-C-04001). However, based on a review of drawing SB-2020-107-404 it is apparent that this is effectively a "basement carpark", insofar as it is enclosed. As such, in accordance with Section 3.18 of the Greater Dublin Regional Code of Practice for Drainage Works, all drainage from basement areas shall be pumped to ground level prior to discharging by gravity to the public foul sewerage system. Basement car parks must be discharged to the foul system via a petrol/oil interceptor. Access to basement car parks shall be designed such that surface water run-off from the surrounding paved areas cannot flow down the ramp".

3.4.14.3 Flooding:

The report of the Senior Executive Engineer from the Drainage Section states that "*I am satisfied with the Applicant's conclusion that the site is located in Flood Zone 'C' and hence, does not merit further assessment*".

SURFACE WATER - MICRODRAINAGE CALCULATIONS

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	
File 21207-JBB-PH2-XX-CA-	Checked by	Drainage
Innovyze	Network 2020.1	i

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Mode	1 - S	Scotland and Ireland	
Return Period (years)	2	PIMP (%)	100
M5-60 (mm) 18.	800	Add Flow / Climate Change (%)	0
Ratio R 0.3	250	Minimum Backdrop Height (m)	0.200
Maximum Rainfall (mm/hr)	50	Maximum Backdrop Height (m)	4.000
Maximum Time of Concentration (mins)	30 M	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha) 0.	000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff. 0.	750	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	67.342	2.245	30.0	0.200	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.000	25.606	0.512	50.0	0.141	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
	28.275 25.583		41.0 40.8	0.048 0.025	0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	e e
S3.000	33.931	1.131	30.0	0.092	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S1.003	65.946	0.824	80.0	0.154	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
	33.667 25.332			0.081 0.020	4.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	ଟ ଟ
S5.000	26.330	0.132	200.0	0.092	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
S4.002	35.923	0.180	200.0	0.053	0.00	0.0	0.600	0	225	Pipe/Conduit	6

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.000	50.00	4.47	15.500	0.200	0.0	0.0	0.0	2.40	95.3	27.1
S2.000	50.00	4.23	13.800	0.141	0.0	0.0	0.0	1.85	73.7	19.1
S1.001 S1.002	50.00 50.00		13.180 12.491	0.389 0.413	0.0	0.0	0.0		174.1 174.5	52.6 56.0
\$3.000	50.00		13.070	0.092	0.0	0.0	0.0			12.4
s1.003	50.00		11.864	0.659	0.0	0.0	0.0		124.4	
S4.000	50.00	4.61	12.776	0.081	0.0	0.0	0.0	0.92	36.6	11.0
S4.001	50.00	5.07	12.608	0.102	0.0	0.0	0.0	0.92	36.6	13.8
S5.000	50.00	4.48	13.000	0.092	0.0	0.0	0.0	0.92	36.6	12.5
S4.002	50.00	5.72	12.481	0.247	0.0	0.0	0.0	0.92	36.6	33.5
				©1982-2	020 Innov	yze				

J.B. Barry & H	Partner	s Ltd									Page 2
Classon House					2021	7 - Bessb	oroug	h SHI)		
Dundrum Busine	ess Par	k			(The	e Farm)					
Dublin 14					Stor	m Sewer					Micro
Date 15/02/202	22 11:3	4			Desi	gned by D	OB				
File 21207-JB	з-рн2-х	X-CA-			Chec	ked by					Drainage
Innovyze						ork 2020.	1				
			1	letwork	c Desid	gn Table f	for St	orm			
PN	Length (m)	Fall (m)	_	I.Area	T.E.		k	HYD		Section Type	Auto Design
	-	(m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	(mm)	Section Type Pipe/Conduit	Design
S1.004	(m)	(m) 0.753	Slope (1:X) 80.0	I.Area (ha) 0.075	T.E. (mins)	Base Flow (1/s) 0.0	k (mm) 0.600	HYD SECT O	(mm) 375		Design
s1.004 s6.000	(m) 60.260	(m) 0.753 0.213	Slope (1:X) 80.0 200.0	I.Area (ha) 0.075 0.078	T.E. (mins)	Base Flow (1/s) 0.0 0.0	k (mm) 0.600	HYD SECT o	(mm) 375 225	Pipe/Conduit	Design e
S1.004 S6.000 S6.001	(m) 60.260 42.571	(m) 0.753 0.213 0.049	Slope (1:X) 80.0 200.0 200.0	I.Area (ha) 0.075 0.078	T.E. (mins) 0.00 4.00	Base Flow (1/s) 0.0 0.0 0.0	k (mm) 0.600 0.600 0.600	HYD SECT 0 0	(mm) 375 225 225	Pipe/Conduit Pipe/Conduit	Design T T T
S1.004 S6.000 S6.001 S1.005	(m) 60.260 42.571 9.779	(m) 0.753 0.213 0.049 0.283	Slope (1:X) 80.0 200.0 200.0 80.0	<pre>I.Area (ha) 0.075 0.078 0.000 0.016</pre>	T.E. (mins) 0.00 4.00 0.00	Base Flow (1/s) 0.0 0.0 0.0 0.0	k (mm) 0.600 0.600 0.600 0.600	HYD SECT 0 0	(mm) 375 225 225 375	Pipe/Conduit Pipe/Conduit Pipe/Conduit	Design e e e e e

0.0 0.600 o 375 Pipe/Conduit

0.0 0.600 o 375 Pipe/Conduit

0.0 0.600 o 375 Pipe/Conduit 0.0 0.600 o 375 Pipe/Conduit

0.0 0.600 o 525 Pipe/Conduit

0.0 0.600 o 225 Pipe/Conduit 💣 0.0 0.600 o 225 Pipe/Conduit 💣 0.0 0.600 o 225 Pipe/Conduit 💣

Ū,

6

с С С

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Flo
S1.004	60.260	0.753	80.0	0.075	0.00	
S6.000	42.571	0.213	200.0	0.078	4.00	
\$6.001						
S1.006	22.648	0.674	50.0	0.210	0.00	
S1.008	12.673 26.281 35.823	0.526		0.000	0.00	
S1.010	37.725 6.145	0.843	44.8	0.000	0.00	
	25.039 35.011					
	27.061 94.491		200.5 25.0	0.000	0.00	

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.004	49.64	6.21	10.965	0.981	0.0	0.0	0.0	2.03	223.9	131.9
S6.000	50.00	4.77	12.320	0.078	0.0	0.0	0.0	0.92	36.6	10.6
S6.001	50.00	4.95	12.107	0.078	0.0	0.0	0.0	0.92	36.6	10.6
S1.005	49.07	6.40	10.211	1.075	0.0	0.0	0.0	2.03	223.9	142.9
S1.006	48.43	6.62	9.928	1.285	0.0	0.0	0.0	2.57	283.6	168.5
S1.007	48.19	6.70	9.254	1.332	0.0	0.0	0.0	2.57	283.6	173.9
S1.008	47.71	6.87	9.001	1.332	0.0	0.0	0.0	2.57	283.6	173.9
S1.009	47.07	7.10	8.475	1.332	0.0	0.0	0.0	2.57	283.6	173.9
S1.010	46.34	7.38	7.759	1.332	0.0	0.0	0.0	2.57	283.6	173.9
S1.011	46.11	7.47	6.916	1.332	0.0	0.0	0.0	1.68	185.5	173.9
S1.012	44.92	7.95	6.687	1.332	0.0	0.0	0.0	1.03	222.4	173.9
S1.013	50.00	4.10	6.624	0.000	23.8	0.0	0.0	0.89	35.4	23.8
S1.014	50.00	4.59	6.598	0.000	23.8	0.0	0.0	0.92	36.6	23.8
S1.015	50.00	5.19	6.463	0.000	23.8	0.0	0.0		104.5	23.8
	20.00				20.0	5.0	0.0	_,		

Free Flowing Outfall Details for Storm

Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W	
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)	
								(m)			
	S1.015	S.A28		4.390		2.683		0.000	0	0	

J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-	Checked by	Diamage
Innovyze	Network 2020.1	1

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S.B22, DS/PN: S1.013, Volume (m³): 10.0

Unit Defenses	MD-SHE-0205-2380-1680-2380
Design Head (m)	1.680
Design Flow (l/s)	23.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	205
Invert Level (m)	6.624
Minimum Outlet Pipe Diameter (mm)	225
Suggested Manhole Diameter (mm)	1800
Control Points Head (m) Flow (1/s)	Control Points Head (m) Flow (l/s)
Design Point (Calculated) 1.680 23.8 Flush-Flo™ 0.498 23.7 Mea	Kick-Flo® 1.081 19.3 an Flow over Head Range - 20.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)

0.100	7.0	0.800	22.8	2.000	25.9	4.000	36.1	7.000	47.3
0.200	19.5	1.000	20.9	2.200	27.1	4.500	38.2	7.500	48.9
0.300	22.7	1.200	20.3	2.400	28.2	5.000	40.2	8.000	50.4
0.400	23.5	1.400	21.8	2.600	29.3	5.500	42.1	8.500	51.9
0.500	23.7	1.600	23.2	3.000	31.4	6.000	43.9	9.000	53.4
0.600	23.5	1.800	24.6	3.500	33.8	6.500	45.6	9.500	54.8

J.B. Barry & Partners Ltd	
Classon House	20217 -
Dundrum Business Park	(The Far
Dublin 14	Storm Se
Date 15/02/2022 11:34	Designed
File 21207-JBB-PH2-XX-CA-	Checked
Innovyze	Network

Storage Structur

Cellular Storage Manhole: S.B22, DS/PN: S1.013

Invert Level (m) 6.624 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.67 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) Inf.	Area (m²)
0.000	420.0	0.0	0.900	420.0	0.0	1.681	0.0	0.0
0.100	420.0	0.0	1.000	420.0	0.0	1.900	0.0	0.0
0.200	420.0	0.0	1.100	420.0	0.0	2.000	0.0	0.0
0.300	420.0	0.0	1.200	420.0	0.0	2.100	0.0	0.0
0.400	420.0	0.0	1.300	420.0	0.0	2.200	0.0	0.0
0.500	420.0	0.0	1.400	420.0	0.0	2.300	0.0	0.0
0.600	420.0	0.0	1.500	420.0	0.0	2.400	0.0	0.0
0.700	420.0	0.0	1.600	420.0	0.0	2.500	0.0	0.0
0.800	420.0	0.0	1.680	420.0	0.0			

©1982-2020 Innovyze

	Page 4
Bessborough SHD	
rm)	
ewer	Micro
d by DOB	
l by	Drainage
2020.1	
ares for Storm	

J.B. Barry & Partners Ltd	Page 5	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Mirro
Date 15/02/2022 11:34	Designed by DOB	inicio
File 21207-JBB-PH2-XX-CA-	Checked by	Drainage
Innovyze	Network 2020.1	

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

> Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter	
Duration(s) (mins)	15,	30, 60, 120, 180, 240, 360, 480, 600, 720, 960,	
		1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080	
n Period(s) (years)		1, 30, 100	
Climate Change (%)		10, 10, 10	

Return Climate Change (%)

	US/MH			Return C	limate	First	(X)	First (Y) Firs	t (Z)	Overfl		Surcharged Depth
PN	Name	S	torm	Period (Change	Surch	arge	Flood	Over	flow	Act.	(m)	(m)
S1.000	S.B1	15	Winter	1	+10%	100/15	Summer					15.587	-0.138
s2.000	S.B2		Winter	1		100/15						13.884	-0.141
S1.001	S.B3	15	Winter	1	+10%	30/15	Summer					13.303	-0.177
S1.002	S.B4	15	Winter	1	+10%	30/15	Summer					12.617	-0.173
S3.000	S.B5	15	Winter	1	+10%	100/15	Summer					13.128	-0.167
S1.003	S.B6	15	Winter	1	+10%	30/15	Summer					12.060	-0.104
S4.000	S.B7	15	Winter	1	+10%	30/15	Summer					12.867	-0.134
S4.001	S.B8	15	Winter	1	+10%	30/15	Summer					12.709	-0.124
S5.000	S.B9	15	Winter	1	+10%	100/15	Summer					13.099	-0.126
S4.002	S.B10	15	Winter	1	+10%	30/15	Summer					12.655	-0.051
S1.004	S.B11	15	Winter	1	+10%	30/15	Summer					11.177	-0.163
S6.000	S.B12	15	Winter	1	+10%							12.409	-0.136
S6.001	S.B13	15	Winter	1	+10%							12.202	-0.131
S1.005	S.B14	15	Winter	1	+10%	30/15	Summer					10.451	-0.136
S1.006	S.B15	15	Winter	1	+10%	30/15	Summer					10.147	-0.156
S1.007	S.B16	15	Winter	1	+10%	30/15	Summer					9.519	-0.111
S1.008	S.B17	15	Winter	1	+10%	30/15	Summer					9.226	-0.149
S1.009	S.B18	15	Winter	1	+10%	30/15	Summer					8.696	-0.154
S1.010	S.B19	15	Winter	1	+10%	30/15	Summer					7.972	-0.162
S1.011			Winter	1	+10%		Summer					7.372	0.081
S1.012	S.B21	180	Winter	1	+10%	30/15	Summer					7.111	-0.101
S1.013				1	+10%	1/15	Summer					7.105	0.256
S1.014				1	+10%							6.732	-0.091
S1.015	S.B24	180	Winter	1	+10%							6.534	-0.154
				Floode	d		Ha	lf Drain	Pipe				
			US/M	H Volume		/ Overf		Time	Flow			Level	
		PN	•		Cap.	•		(mins)	(1/s)	Stat	tus I	Exceeded	
					-								
		S1.0							29.0		OK		
		S2.0	00 S.B	2 0.00					20.7		OK		
					(D1982-2	2020 I	nnovyze					

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	
File 21207-JBB-PH2-XX-CA-	Checked by	Drainage
Innovyze	Network 2020.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded		
	US/MH	Volume	Flow /	Overflow
PN	Name	(m³)	Cap.	(l/s)
01 001	a 50	0 000	0 25	
		0.000		
		0.000		
S3.000	S.B5	0.000	0.15	
S1.003	S.B6	0.000	0.74	
S4.000	S.B7	0.000	0.34	
S4.001	S.B8	0.000	0.41	
S5.000	S.B9	0.000	0.40	
S4.002	S.B10	0.000	0.95	
S1.004	S.B11	0.000	0.60	
S6.000	S.B12	0.000	0.32	
S6.001	S.B13	0.000	0.37	
S1.005	S.B14	0.000	0.73	
S1.006	S.B15	0.000	0.64	
S1.007	S.B16	0.000	0.84	
S1.008	S.B17	0.000	0.67	
S1.009	S.B18	0.000	0.65	
S1.010	S.B19	0.000	0.61	
S1.011	S.B20	0.000	1.51	
S1.012	S.B21	0.000	0.30	
S1.013	S.B22	0.000	1.76	
S1.014	S.B23	0.000	0.66	
S1.015	S.B24	0.000	0.22	

	Flow	Status	Level Exceeded
	55.2	OK	
	57.8	OK	
	13.4	OK	
	87.7	OK	
	11.6	OK	
	13.9	OK	
	13.6	OK	
	32.7	OK	
	126.1	OK	
	11.0	OK	
	11.1	OK	
	139.1	OK	
	161.3	OK	
	165.9	OK	
	164.8	OK	
	165.1	OK	
	166.0	OK	
		SURCHARGED	
	58.4		
99		SURCHARGED	
	22.4	OK	
	22.4	OK	

J.B. Barry & Partners Ltd	Page 7	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-	Checked by	Diamaye
Innovyze	Network 2020.1	I

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

> Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter	
Duration(s) (mins)	15,	30, 60, 120, 180, 240, 360, 480, 600, 720, 960,	
		1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080	
n Period(s) (years)		1, 30, 100	
Climate Change (%)		10, 10, 10	

Return Climate Change (%)

PN	US/MH Name	S	torm	Return Period			t (X) harge	First (Y Flood) First Over		Overf Act		Water Level (m)	Surcharged Depth (m)
S1.000	S.B1	15	Winter	30	+10%	100/15	Summer						15.640	-0.085
S2.000	S.B2	15	Winter	30	+10%	100/15	Summer						13.936	-0.089
S1.001	S.B3	15	Winter	30	+10%	30/15	Summer						13.794	0.313
S1.002	S.B4	15	Winter	30	+10%	30/15	Summer						13.514	0.723
S3.000	S.B5	15	Winter	30	+10%	100/15	Summer						13.286	-0.009
S1.003	S.B6	15	Winter	30	+10%	30/15	Summer						13.237	1.073
S4.000	S.B7	15	Winter	30	+10%	30/15	Summer						13.256	0.255
S4.001	S.B8	15	Winter	30	+10%	30/15	Summer						13.192	0.360
S5.000	S.B9	15	Winter	30	+10%	100/15	Summer						13.188	-0.037
S4.002	S.B10	15	Winter	30	+10%	30/15	Summer						13.119	0.413
S1.004			Winter	30	+10%	30/15	Summer						11.944	0.604
S6.000			Winter	30	+10%								12.464	-0.081
S6.001			Winter	30	+10%								12.261	-0.071
S1.005			Winter	30	+10%		Summer						11.141	0.554
S1.006			Winter	30	+10%		Summer						10.724	0.420
S1.007			Winter	30	+10%		Summer						10.046	0.417
S1.008			Winter	30	+10%		Summer						9.619	0.243
S1.009			Winter	30	+10%	/ -	Summer						9.069	0.219
S1.010			Winter	30	+10%		Summer						8.370	0.236
S1.011				30	+10%	, -	Summer						7.856	0.565
S1.012				30	+10%	/ -	Summer						7.849	0.637
S1.013				30	+10%	1/15	Summer						7.843	0.994
S1.014				30	+10%								6.737	-0.086
S1.015	S.B24	360	Summer	30	+10%								6.536	-0.152
				Flood	od		P.	lf Drain	Dino					
				H Volum		1 0110-		Time	Flow			Ter	vel	
			•			•				0+				
		PN	Nam	e (m ³)	Cap.	(1/	s)	(mins)	(1/s)	Sta	cus	EXCE	eded	
		S1.0							64.6		OK			
		S2.0	000 S.E	32 0.00	00 0.6	58			46.0		OK			
					(01982-	2020 I	nnovyze						

J.B. Barry & Partners Ltd	
Classon House	20217 - B
Dundrum Business Park	(The Farm
Dublin 14	Storm Sew
Date 15/02/2022 11:34	Designed
File 21207-JBB-PH2-XX-CA-	Checked b
Innovyze	Network 2

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded			,
	US/MH		Flow /	Overflow	
PN	Name	(m ³)	Cap.	(1/s)	
		()	F -	(_/ -/	
S1.001	S.B3	0.000	0.73		
S1.002	S.B4	0.000	0.67		
S3.000	S.B5	0.000	0.33		
S1.003	S.B6	0.000	1.35		
S4.000	S.B7	0.000	0.61		
S4.001	S.B8	0.000	0.75		
S5.000	S.B9	0.000	0.89		
S4.002	S.B10	0.000	1.82		
S1.004	S.B11	0.000	1.04		
S6.000	S.B12	0.000	0.70		
S6.001	S.B13	0.000	0.81		
S1.005	S.B14	0.000	1.22		
S1.006	S.B15	0.000	1.02		
S1.007	S.B16	0.000	1.32		
S1.008	S.B17	0.000	1.04		
S1.009	S.B18	0.000	0.99		
S1.010	S.B19	0.000	0.92		
S1.011	S.B20	0.000	0.89		
S1.012	S.B21	0.000	0.50		
S1.013	S.B22	0.000	1.86		
S1.014	S.B23	0.000	0.70		
S1.015	S.B24	0.000	0.23		

	Page 8
Bessborough SHD	
rm)	
ewer	Micro
d by DOB	
by	Drainage
2020.1	

w	Half Drain Time (mins)	Flow	Status	Level Exceeded
		115.2	SURCHARGED	
		104.9	SURCHARGED	
		29.8	OK	
		160.2	SURCHARGED	
		20.9	SURCHARGED	
		25.5	SURCHARGED	
		30.1	OK	
		62.9	SURCHARGED	
		218.5	SURCHARGED	
		24.5	OK	
		24.6	OK	
		233.6	SURCHARGED	
		259.4	SURCHARGED	
		259.8	SURCHARGED	
		256.8	SURCHARGED	
		253.2	SURCHARGED	
		248.9	SURCHARGED	
		98.1	SURCHARGED	
		97.5	SURCHARGED	
	176		SURCHARGED	
		23.6	OK	
		23.6	OK	

J.B. Barry & Partners Ltd	Page 9	
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micco
Date 15/02/2022 11:34	Designed by DOB	
File 21207-JBB-PH2-XX-CA-	Checked by	Drainage
Innovyze	Network 2020.1	
100 year Return Period Summary	y of Critical Results by Maximum Level	(Rank 1) for Storm

<u>Simulation Criteria</u>

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

> Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 18.800 Cv (Summer) 0.750 Region Scotland and Ireland Ratio R 0.250 Cv (Winter) 0.840

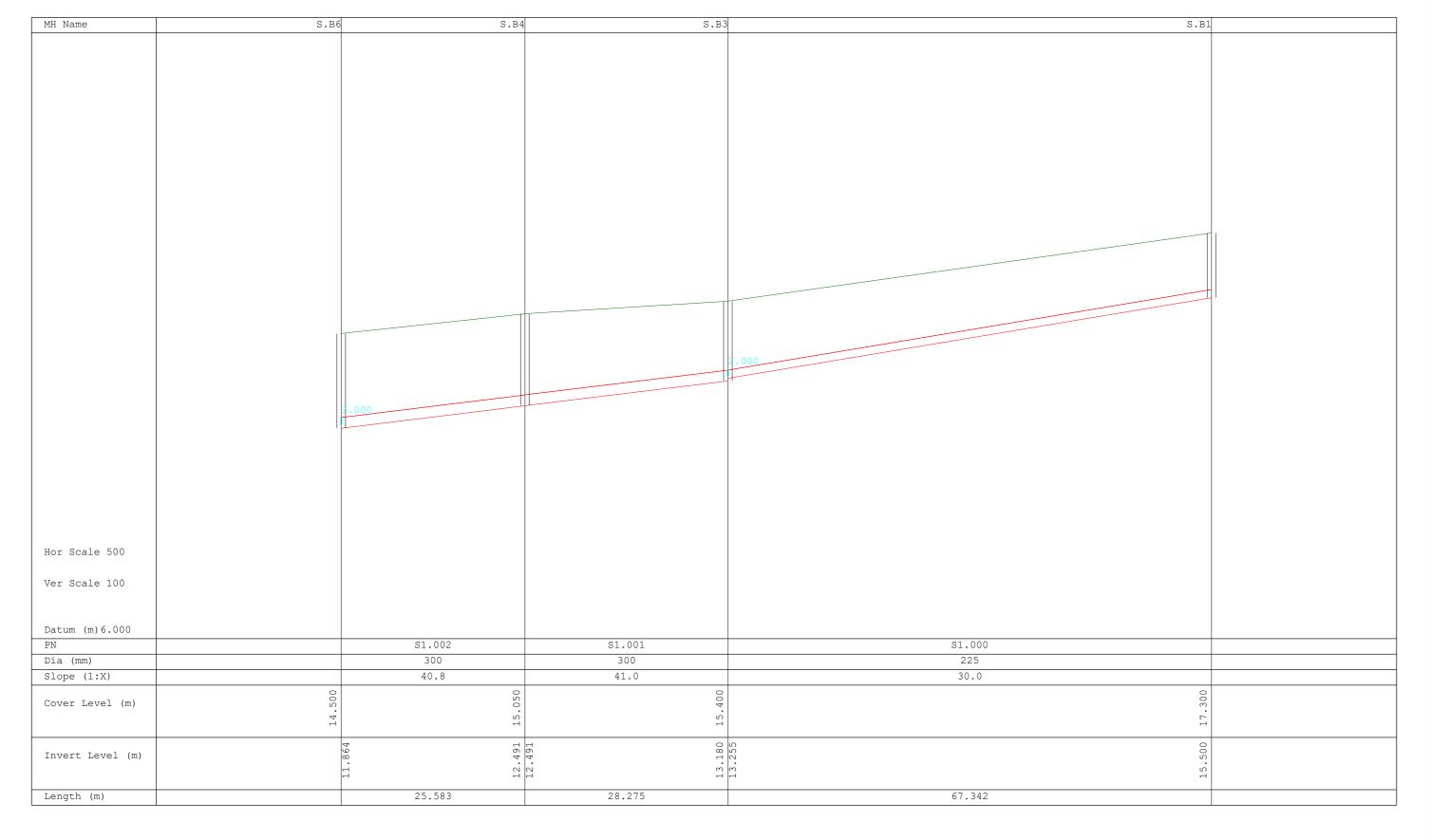
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)		Summer and Winter	
Duration(s) (mins)	15,	30, 60, 120, 180, 240, 360, 480, 600, 720, 960,	
		1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080	
rn Period(s) (years)		1, 30, 100	
Climate Change (%)		10, 10, 10	

Return Climate Change (%)

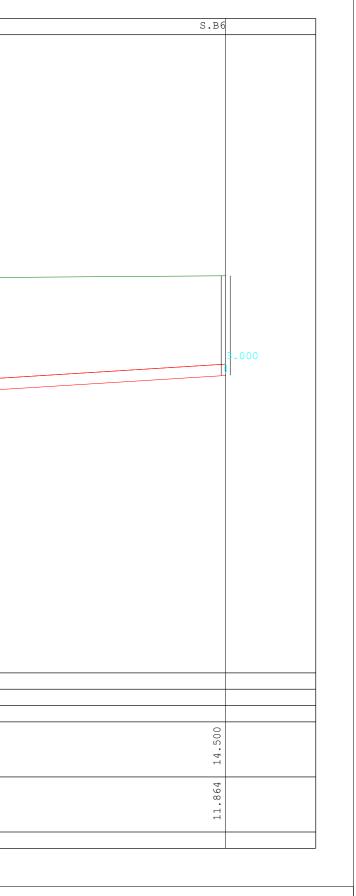
PN	US/MH Name	Sto		Return C Period (First Surch		First () Flood	-	st (Z) erflow	Overflow Act.		Surcharged Depth (m)
S1.000	S.B1	15 W	linter	100	+10%	100/15	Summer					15.870	0.145
S2.000	S.B2		linter	100		100/15						14.999	0.974
S1.001	S.B3		linter	100	+10%	, -	Summer					14.893	1.412
S1.002	S.B4	15 W	linter	100	+10%		Summer					14.625	1.834
S3.000	S.B5	15 W	linter	100	+10%	100/15	Summer					14.396	1.101
S1.003	S.B6	15 W	linter	100	+10%	30/15	Summer					14.355	2.191
S4.000	S.B7	15 W	linter	100	+10%	30/15	Summer					13.693	0.692
S4.001	S.B8	15 W	linter	100	+10%	30/15	Summer					13.643	0.810
S5.000	S.B9	15 W	linter	100	+10%	100/15	Summer					13.626	0.401
S4.002	S.B10	15 W	linter	100	+10%	30/15	Summer					13.575	0.869
S1.004	S.B11	15 W	linter	100	+10%	30/15	Summer					13.026	1.686
S6.000	S.B12	15 W	linter	100	+10%							12.494	-0.051
S6.001	S.B13	15 W	linter	100	+10%							12.308	-0.024
S1.005	S.B14	15 W	linter	100	+10%	30/15	Summer					12.148	1.562
S1.006	S.B15	15 W	linter	100	+10%	30/15	Summer					11.658	1.355
S1.007	S.B16	30 W	linter	100	+10%	30/15	Summer					10.801	1.172
S1.008	S.B17	15 W	linter	100	+10%	30/15	Summer					10.277	0.901
S1.009	S.B18	30 W	linter	100	+10%	30/15	Summer					9.582	0.732
S1.010	S.B19	30 W	linter	100	+10%	30/15	Summer					8.725	0.592
S1.011	S.B20	360 W	linter	100	+10%	1/15	Summer					8.297	1.006
S1.012	S.B21	360 W	linter	100	+10%	30/15	Summer					8.290	1.078
S1.013	S.B22	360 W	linter	100	+10%	1/15	Summer					8.283	1.434
S1.014	S.B23	1440 W	linter	100	+10%							6.737	-0.086
S1.015	S.B24	1440 W	linter	100	+10%							6.536	-0.152
				Flooded	1		Hal	f Drain	Pipe				
			US/MH	Volume		/ Overf		Time	Flow		L	evel	
		PN	Name	(m ³)	Cap.	(1/s		(mins)	(1/s)	Stat	_	eeded	
		S1.000) S.B1	0.000	0.86	5			79.3	SURCHA	RGED		
		S2.000	S.B2	0.000	0.78	3			53.1	SURCHA	RGED		
					C	1982-2	2020 I	nnovyze					

J.B. Barry & Partners Ltd	
Classon House	20217 - в
Dundrum Business Park	(The Farm
Dublin 14	Storm Sew
Date 15/02/2022 11:34	Designed
File 21207-JBB-PH2-XX-CA-	Checked b
Innovyze	Network 2


100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Flooded		a 61	н
	•			Overflow	
PN	Name	(m³)	Cap.	(1/s)	
S1.001	S.B3	0.000	0.75		
S1.002					
		0.000			
		0.000			
S4.000					
		0.000			
		0.000			
		0.000			
S1.004	S.B11	0.000	1.11		
S6.000	S.B12	0.000	0.92		
S6.001	S.B13	0.000	1.00		
S1.005	S.B14	0.000	1.36		
S1.006	S.B15	0.000	1.16		
S1.007	S.B16	0.000	1.48		
S1.008	S.B17	0.000	1.18		
S1.009	S.B18	0.000	1.12		
S1.010	S.B19	0.000	1.04		
S1.011	S.B20	0.000	0.86		
S1.012	S.B21	0.000	0.48		
S1.013	S.B22	0.000	1.86		
S1.014	S.B23	0.000	0.70		
S1.015	S.B24	0.000	0.23		

	Page 10
Bessborough SHD rm)	
ewer	Micro
d by DOB	Drainage
by	Diamage
2020.1	

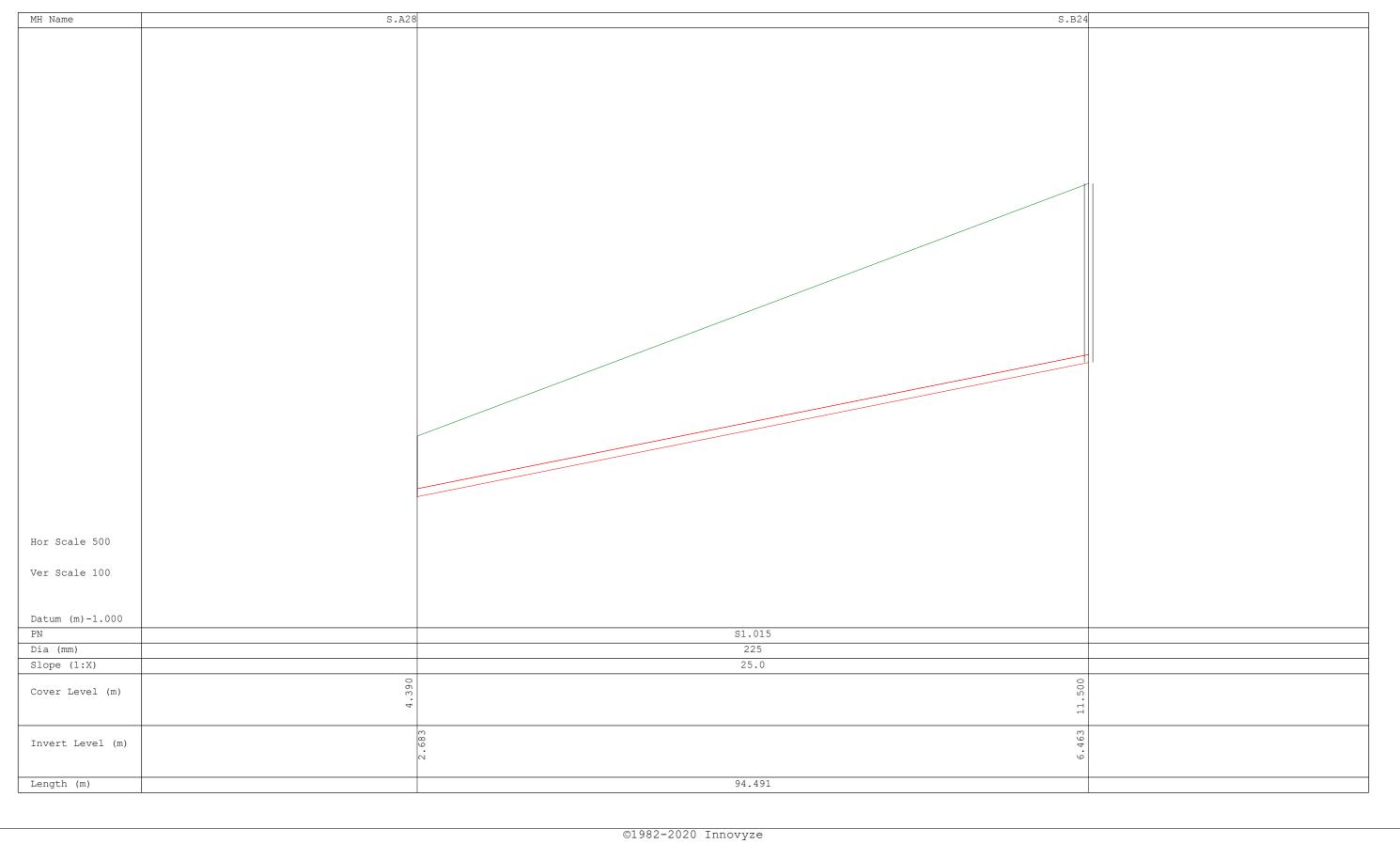

ow		Flow	Status	Level Exceeded
		117.2	SURCHARGED	
		110.9	SURCHARGED	
		32.2	FLOOD RISK	
		169.7	FLOOD RISK	
		25.1	SURCHARGED	
		29.1	SURCHARGED	
		34.3	SURCHARGED	
		75.1	SURCHARGED	
		233.8	SURCHARGED	
		31.9	OK	
		30.4	OK	
		259.4	SURCHARGED	
		294.5	SURCHARGED	
		292.0	SURCHARGED	
			SURCHARGED	
	252		SURCHARGED	
		23.6		
		23.6	OK	

J.B. Barry & Partners Ltd		Page 1
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Digiliarie
Innovyze	Network 2020.1	

J.B. Barry & Partners Ltd		Page 2
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	
Innovyze	Network 2020.1	- ·

MH Name	S.B15	S.B14	S.B11	
		6.001	4.002	
		0.001		
Hor Scale 500				
Ver Scale 100				
Datum (m)4.000				
		1.005	01.004	21.002
PN		31.005	S1.004	\$1.003
Dia (mm)		375	375	300
Slope (1:X)		80.0	80.0	80.0
	0	0	0	
Cover Level (m)	00	0	0 4	
	13.000	13.600	14.400	
	œ		ni o	
Invert Level (m)	9.928	10.211	10.965 11.040	
	<u>ه</u>	<u>10</u> .	- T1	
			CO. 0.CO.	65.946
Length (m)	4	22.648	60.260	65.946

J.B. Barry & Partners Ltd		Page 3
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Dialitacje
Innovyze	Network 2020.1	


		S.B1	9 S.B18	3S.B17	7 S.B16
Hor Scale 500 Ver Scale 100 Datum (m)1.000					
Ver Scale 100 Datum (m)1.000 PN	\$1.011	S1.010		\$1.008	S1.007
Ver Scale 100 Datum (m)1.000 PN	375	375	<u>\$1.009</u> 375	S1.008 375	375
Ver Scale 100 Datum (m)1.000 PN Dia (mm)	375	375	375	375	375
Ver Scale 100	375 78.0 00 00 00 00 01 11	375 44.8	375 50.0	375 50.0 4	375 50.0 20 21
Ver Scale 100 Datum (m)1.000 PN Dia (mm) Slope (1:X)	375 78.0	375 44.8	375 50.0	375 50.0	375 50.0 00 7

B16	S.B15	
		1
	21.000	
	\$1.006 375	
	50.0	
0		
12.200	13.000	
12	1 3	
4	4. 00	
9.254	9.254	
о О	ত ত	
	33.709	

J.B. Barry & Partners Ltd		Page 4
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamage
Innovyze	Network 2020.1	

MH Name	S.B24	S.B23	S.B22	S.B2
			~	
Hor Scale 500				
Ver Scale 100				
Datum (m) 1 000				
Datum (m)1.000		S1.014	S1.013	S1.012
Dia (mm)		225	225	525
Slope (1:X)		200.5	1356.0	397.4
	0			
Cover Level (m)	11.500	11.300	9.400	
		11	თ	C
		m œ	۵0 ۲	4, 1
Invert Level (m)		6.463 6.598	6.598 6.624	6.60.62.4 6 10 10 10 10 10 10 10 10 10 10 10 10 10
		<u>م</u>	<u>ن</u>	ע ט
I	1			

J.B. Barry & Partners Ltd		Page 5
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Drainage
Innovyze	Network 2020.1	1

J.B. Barry & Partners Ltd		Page 6
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	S.B3	S.B2)
		1.000	
Hor Scale 500			
Jer Scale 100			
Datum (m)6.000			
PN		\$2.000	
Dia (mm)		225	
Slope (1:X)		50.0	
	0		
Cover Level (m)	. 4 0	15.600	
	15.400	15	
Invert Level (m)		13.288 13.800 13.800	
		[3.	
Length (m)		25.606	

J.B. Barry & Partners Ltd		
20217 - Bessborough SHD		
(The Farm)		
Storm Sewer	Micro	
Designed by DOB		
Checked by	Drainage	
Network 2020.1		
	(The Farm) Storm Sewer Designed by DOB Checked by	

MH Name	S.B6	S.B5	
		<u> </u>	
	1.002		
Hor Scale 500			
Ver Scale 100			
Datum (m)5.000			
PN		\$3.000	
Dia (mm)		225	
Slope (1:X)		30.0	
• · · · /	0		
Cover Level (m)	0 0	20	
	14.500	- 14.200	
Invert Lovel (m)	ი. ღ		
Invert Level (m)		0 4 0 	
Invert Level (m)	11.939	13.070	

J.B. Barry & Partners Ltd		Page 8
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Drainage
Innovyze	Network 2020.1	

MH Name	S.B11	. S.B10	S.B8	S.B
				1
			5.000	
		1.003		
Hor Scale 500				
Ver Scale 100				
Datum (m) 4.000		at 000	24 001	24.000
PN		\$4.002 225	\$4.001 225	\$4.000 225
Dia (mm) Slope (1:X)		225	225	225
Slope (I:X)				
Cover Level (m)	400	400	300 m	
	14.400	14.400	14.300	4
Invert Level (m)		12.301	12.608	2008 2008
THACTC HCACT (III)		12.3	2.6	12.608 77 66
Length (m)		35.923	25.332	33.667

	9
.B7	
14.300	
•	
4	
14	
12.776 14	

J.B. Barry & Partners Ltd		Page 9
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	– Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Drainage
Innovyze	Network 2020.1	-

MH Name	S.B10	S.BS	ð
	1		
		4.001	
Hor Scale 500			
Ver Scale 100			
Datum (m) 5.000			
PN		\$5.000	
Dia (mm)		225	
Slope (1:X)		200.0	
	٥		
Cover Level (m)	14.400	15.000	
	1 4 •	15.	
Invert Level (m)		12.868 13.000 13.000	
THACTC POACT (III)		3.0	
		ri ř	
Length (m)		26.330	

J.B. Barry & Partners Ltd		Page 10
Classon House	20217 - Bessborough SHD	
Dundrum Business Park	(The Farm)	
Dublin 14	Storm Sewer	Micro
Date 15/02/2022 11:34	Designed by DOB	Drainage
File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

MH Name	S.B14	S.B13	S.B12	2
				-
	1.004			
	l III			
or Scale 500				
er Scale 100				
atum (m)4.000	22	.001	\$6.000	
Dia (mm)		25	225	
Slope (1:X)		0.0	200.0	
over Level (m)	13.600	. 600	13.750	
	1 1 3	н 1	m H	
		-		
nvert Level (m)	12.058	12.107	12.107 12.320	
	12.	12.	12.	
Length (m)		779	42.571	
(iii)	9.	, , ,	72.3/1	

ATTENUATION ESTIMATES, STORAGE TANK SIZING

		Bessborou	gh SHD De	evelopmer	nt				RA	RRY
DESCRIPTION:	2	21207-JBB-PH2	2-XX-CA-C-044	106_Attenuati	ion_Assessm	ent_(Phase_2	2)		& PA	RTNERS
DATE: 17/02/	/2022		SHEET	100 Year +1	10%		L	cons	ulting	engineers
Catchment Characteristi	ics									Sheet 1
Site Area SAAR						1.480 1106	mm			
Soil Category M5-60 M5-2D		4		SOIL =		0.47 16.3 76.6	mm			
= M5-60 / M5-2d =						0.21				
		~~ ~~	1/2							
Permissible flow (Q100	0) =	23.79	1/5							
Permissible flow (Q100	0) =	23.79	1/5							
·	0) =									
Developent Area =	0) =	1.480	ha							
Developent Area = mpervious Area =	-	1.480 1.480	ha ha	Average	Permsble	Flow to	Storage	7		
Developent Area = mpervious Area = Rainfall Rainf	fall	1.480 1.480 Including CCF	ha ha Total volume	Average	Permsble Flow	Flow to be stored	Storage Volume]		
Developent Area = mpervious Area = Rainfall Rainf	fall R100)	1.480 1.480	ha ha	-		Flow to be stored m3/s]		
Developent Area = mpervious Area = Rainfall Rainf duration depth (F	fall ิสาย สาย ราย ราย ราย ราย ราย ราย ราย ราย ราย ร	1.480 <u>1.480</u> Including CCF (R100)*1.1	ha ha Total volume of runoff	flow	Flow	be stored	Volume			
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mr	fall R100) 1	1.480 <u>1.480</u> Including CCF (R100)*1.1 mm	ha ha Total volume of runoff m3	flow m3/s	Flow m3/s	be stored m3/s	Volume m3			
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mm 0.25 16.	fall R100) 1 1 6	1.480 <u>1.480</u> Including CCF (R100)*1.1 mm 17.7	ha ha Total volume of runoff m3 262.11	flow m3/s 0.291	Flow m3/s <u>0.0238</u>	be stored m3/s 0.267	Volume m3 241			
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mm 0.25 16. 0.5 21.0	fall R100) 1 1 6 9	1.480 <u>1.480</u> Including CCF (R100)*1.1 <u>mm</u> <u>17.7</u> 23.8	ha ha Total volume of runoff m3 262.11 351.65	flow m3/s 0.291 0.195	Flow m3/s 0.0238 0.0238	be stored m3/s 0.267 0.172	Volume m3 241 309	-		
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mm 0.25 16. 0.5 21.0 1 28.0	fall 100) 1 6 9 7	1.480 1.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8	ha ha Total volume of runoff m3 262.11 351.65 470.49	flow m3/s 0.291 0.195 0.131	Flow m3/s 0.0238 0.0238 0.0238	be stored m3/s 0.267 0.172 0.107	Volume m3 241 309 385	-		
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mm 0.25 16. 0.5 21.0 1 28.9 2 38.	fall R100) 1 1 6 9 7 8	1.480 1.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6	ha ha Total volume of runoff m3 262.11 351.65 470.49 630.04	flow m3/s 0.291 0.195 0.131 0.088	Flow m3/s 0.0238 0.0238 0.0238 0.0238	be stored m3/s 0.267 0.172 0.107 0.064	Volume m3 241 309 385 459			
Developent Area = mpervious Area = Rainfall Rainf duration depth (F hrs mm 0.25 16. 0.5 21.0 1 28.9 2 38.7 4 51.8	fall R100) 1 1 6 9 7 8 5	1.480 1.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0	ha ha Total volume of runoff m3 262.11 351.65 470.49 630.04 843.30 1001.22	flow m3/s 0.291 0.195 0.131 0.088 0.059	Flow m3/s 0.0238 0.0238 0.0238 0.0238 0.0238	be stored m3/s 0.267 0.172 0.107 0.064 0.035	Volume m3 241 309 385 459 501			
Developent Area = mpervious Area = Rainfall Rainfall duration depth (F hrs mm 0.25 16.1 0.5 21.0 1 28.3 2 38.1 4 51.8 6 61.5	fall R100) 1 6 9 7 8 8 5 3	1.480 1.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7	ha ha Total volume of runoff m3 262.11 351.65 470.49 630.04 843.30	flow m3/s 0.291 0.195 0.131 0.088 0.059 0.046	Flow m3/s 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238	be stored m3/s 0.267 0.172 0.107 0.064 0.035 0.023	Volume m3 241 309 385 459 501 487			
Developent Area = mpervious Area = Rainfall Rainfall duration depth (F hrs mm 0.25 16. 0.5 21.0 1 28.9 2 38. 4 51.6 6 61.9 12 82.5	fall I R100) 1 6 9 7 7 8 8 5 3 3 .3	1.480 1.480 Including CCF (R100)*1.1 mm 17.7 23.8 31.8 42.6 57.0 67.7 90.5	ha ha Total volume of runoff m3 262.11 351.65 470.49 630.04 843.30 1001.22 1339.84	flow m3/s 0.291 0.195 0.131 0.088 0.059 0.046 0.031	Flow m3/s 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238	be stored m3/s 0.267 0.172 0.107 0.064 0.035 0.023 0.007	Volume m3 241 309 385 459 501 487 312			

S I URIVI E CH STORMWAT	er Manageme	water Management System Design 1001	1 001	ver: Aug15
		[
PROJECT REF: Bessborough SHD Development				
LOCATION:				
DATE: 17-Feb-22				
CREATED BY: DOB				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	501 m ³		StormTech Chamber Model	MC3500
Stormtech chamber model	MC3500		Unit Width	1.955 m
Filtration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	2.18 m
Number of Isolator Rows (IR)	1		Unit Height	1.145 m
			Min Cover Over System	0.3 m
SITE PARAMETERS			Max Cover Over Chamber	2.4 m
Stone Porosity	43%		Chamber Internal Storage Vol.	3.11 m ³
Excavation Batter Angle (degrees)	。09	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0 m ³
Stone Above Chambers	0.3 m	0.30		
Stone Below Chambers	0.3 m	0.23		
In-between Row Spacing	0.23 m	0.23	STONE AND EXCAVATION DETAIL	

Additional Storage outside Excavation. E.g manholes, Header Pipe	0 m ³		Volume of Dig for System	821 m ³
			Width at base	18.00 m
HEADER PIPE			Width at top	20.01 m
Is Header pipe required within excavation	No		-ength at base	23.70 m
Orientation of Header Pipe	Parrallel to IR		-ength at top	25.71 m
Diameter of Header Pipe	0.6 m		Depth Of System	1.75 m
Length of Header Pipe	0		Area of Dig at Base of System	427 m ²
			Area of Dig at Top of System	515 m ²
CHAMBER SYSTEM DIMENSIONS	Calculated Adopted		Void Ratio	61%
Number of Rows		8 ea	Stone Requirement - m3	564 m ³
Number of units per Row		10 ea	Stone Requirement - tonne	924 tonne
System Installed Storage Depth (effective storage depth)	1.745	E E		
Tank overall installed Width at base	17.85	18.00 m		
Tank overall installed Length at Base	23.54	23.7 m		
Total Effective System Storage	496.2	501.2 m ³		

CORK CITY COUNCIL - EXISTING WATERMAIN RECORDS

• Appendix 2-9 - Phase 1 'The Meadows' Energy Statement prepared by DKPartnership

DKPartnership Dublin Cork London T:01-813-1930 T:064-664-1686 E:post@dkpartnership.com

ENERGY ANALYSIS REPORT

ENERGY USE ANALYSIS and PART L COMPLIANCE STATEMENT

Phase 1 - The Meadows - Bessborough

Proposed Residential Development

Bessborough, Ballinure, Blackrock, Co. Cork

Estuary View Enterprises 2020 Ltd

DKP document no 5240

Project file no **DKP-M88-5240 ¦ 1P** 2022-02-21

Document control

DKP project no: M88 DKP document no: 5240 Project file no: DKP-M88-5240

Circular	lss	sue >	1P#	1P
Clients	Estuary View Enterprises 2020 Ltd		\checkmark	\checkmark
Architects	Shipseybarry Architects		\checkmark	\checkmark
Planning consultants	HW Planning		\checkmark	\checkmark
Landscape architects	Ilsa Rutgers			\checkmark

Issue	1P#	2022-01-12	Draft, for review
Issue	1P	2022-02-21	For final issue

Document issue status ID

- # Sketch/draft
- P Planning
- C Concept
- D Design
- G General information
- T Tender
- W Works/construction
- Z As-build/constructed

Issue	Prepared	Checked	Approved
1	214	201	201
2	201	201	201
3			

ING Gerard (Craig) van Deventer CEng., BE(mech)., HDip CIOB, MCIBSE

M : [00] 353 (0)87 260 8080

E : gerard@dkpartnership.com

DKPartnership 70 Main Street, Applewood , Swords, Co. Dublin, Ireland Reen Kenmare Co. Kerry

post@dkpartnership.com www.dkpartnership.com

T : [00] 353 (0) 1813 1930 T : [00] 353 (0)64664 1686

Contents

Se

Section		Page
1	Introduction	4
2	Executive summary	5
3	Geographical project overview	6
4	Approach, methodology and calculation results	7

1 Introduction

1.1 Report purpose

This report gives information on the projects energy status and carbon dioxide emissions, the statutory compliance requirements and energy/CO2 reduction achievements based on the proposed building / construction specifications.

1.2 Instruction

DKPartnership (DKP) have been commissioned by Estuary View Enterprises 2020 Ltd, to carry out the analysis and report for the proposed development at Bessborough, Co. Cork.

1.3 Development description

The development consists of 280 build to sell apartments, associated supporting uses, a 25 child creche facility, communal open space areas, landscaping, under-podium and car parking spaces (99 spaces), bicycle parking spaces, bin stores, public lighting and all ancillary site development works.

The development also consists of a new pedestrian and cycle way bridge connecting the site to the passage west greenway to the Eastern boundary. The development is arranged around 4 main L-shaped blocks ,Builds A,B,C,& D with a central spine public route running East-West. A raised landscape podium is located to the South of this route .Building Heights range form 1 - 10 storeys at varying locations.

1.4 Policy and building regulation requirements.

The project is subject to the following statutory and policy energy usage and CO2 emission target requirements: TGD Part L 2019 for the residential element and Part L 2017 for the non residential element.

1.5 Approach

The energy usage and carbon emissions are calculated using the DEAP software and approached using the basic DKP energy reduction steps in the following order :

- a) Reduce energy usage
- b) Produce energy efficiently
- c) Provide on-site energy

2 Executive summary

2.1 Analysis conducted

In this report the primary energy usage and carbon dioxide emissions have been analysed to provide an energy efficient building in compliance with the current standards and regulations.

2.2 Policy and building regulations applied

Given its time frame currently known the new development's requires compliance (energy) to Part L 2019 for the residential element and Part L 2017 for the non residential element . Compliance to both the above noted Part L would deem the development and developments residential units to be "Nearly Zero Energy Buildings" (NZEB) in accordance to the EU Energy performance of Buildings Directive Recast 2013/31/EU.

2.3 Calculation data, targets and achievements.

For the purpose of this report as the residential element dominates the few non residential facilities the calculation data provided in the tables below is based on Part L 2019 and covers the main criteria ; a) Primary energy, b) Carbon dioxide, c) Renewable energy. The calculation data given is the average residential unit size, occupation, configuration, orientation, etc. To comply to Part L the residential unit(s) requires to achieve a primary energy reduction of 70% (0.30 MEPC factor), a carbon emission reduction of 65% (0.35 MCPC factor) and a 20% renewable energy contribution on the reference residential unit. The reference residential unit is the proposed residential unit but by the SEIA stipulated standard (poorer) Part L calculation parameters, U-values/insulation levels, boiler efficiency, controls etc. The table below represents the reference residential unit data, the to be achieved data and the current achieved data of the average residential type across the development using the applied reduction measures and technologies listed in section 4.

In essence passive reduction measures and on-site produced renewable energy are most beneficial as they are a permanent reduction measures and alternative energy supply combatting not only the global climate change but also the inflation on energy cost.

SINGLE UNIT ELEMENT	UNIT	REFERENCE	TOBEACHIEVED	FACTOR	ACHIEVED	FACTOR
Primary Energy	kWh/y	13,122	3,937	0.30	3,412	0.26
Carbon Dioxide	kg/y	2,684	939	0.35	671	0.25
Renewable energy	kWh/y	0	787	20%	1,058	31%

Ove	rall	develo	эp	m	ent	а	chieve	ments

Number of residential units :	280					
ELEMENT	UNIT	BASELINE	ACHIEVED	FACTOR	REDUCTION	%
Primary Energy	kWh/y	3,674,160	955,282	0.26	2,718,878	74.0%
Carbon Dioxide	kg/y	751,520	187,880	0.25	563,640	75.0%
	UNIT	BASELINE	ACHIVED	FACTOR	CONTRIBUTION	%
Renewable energy	kWh/y	0	296,137	31%	842,852	31%

We note the significant reduction in carbon dioxide of 564 ton CO2 per year and the renewable energy contribution of 842,852 kWh per year which is a huge benefit to the global environment

We note that for this report we have applied the air source heat pump option for the calculation results and TGD Part L compliance. However whereas PV panels are not a requirement with the air source heat pump option they have been shown on the roofs of buildings on the architects drawings to allow for flexibility from a planning perspective in the case that alternative energy / renewable energy solutions are to be considered.

2.4 Policy and building regulation compliance overview

The table below summarises the requirements of Part L for primary energy, CO2 and renewable energy;

POLICY/REGULATION	REQUIREMENT	ACHIEVEMENTS
Primary Energy	To achieve a primary energy reduction factor (EPC) of 0.30 or less over the 2019 energy reference building.	An EPC of 0.26 was achieved which is lower then the maximum MEPC of 0.30 and is therefore compliant.
Carbon Dioxide	To achieve carbon dioxide emission reduction factor of 0.35 or less over the 2019 energy reference building.	An CPC of 0.25 was achieved which is lower then the maximum MCPC of 0.35 and is therefore compliant.
Renewable energy	To achieve at least a 20% renewable primary energy equivalent contribution.	An overall contribution of (primary energy) renewable energy of 44% was achieved with the heat pump renewable energy element.

2.5 Conclusion

Compliance to part L 2019 was achieved using proposed measures achieving a primary energy reduction in excess of the minimum required a 70% (or < 0.30), a carbon dioxide reduction in excess of the minimum required 65% (or < 0.35) and a renewable energy contribution in excess of 20%. As mentioned compliance could also be achieved by a number of other methods listed in section 4.8 in combination with proposed passive reduction measures outlined in section 4.7.

2.6 Mitigation measures / actions

There are no mitigation measures anticipated.

3 Geographical overview

3.1 Project overview

Image 3.1, the (google maps) site map below is a basic overview of the site with proposed development approximately outlined in the area site map.

Image 3.1: approximate proposed phase 1 (Meadows) development site area outlined

4 Approach, methodology and calculation results

4.1 General approach

The target of the building's energy usage and carbon dioxide emissions is to comply to the current building regulations and to design the building and building services in line with the "Nearly Zero Energy Building" energy policy adapted in Part L 2019. Calculations have been conducted on all the developments apartment units with the given data in this report representing the averages across all of the 280 no units with the average unit size to be 64m2. The average unit (size) has been applied for these initial Part L calculations.

4.2 Building regulations requirements

Building regulation (residential) Part L: 2019 or any subsequent editions current at the time of completion.

4.3 Part L 2019 general approach

Part L 2019 requires a new residential unit to make primary energy and carbon dioxide emission reductions on a reference apartment by applying improved calculation parameters and technologies. Part L 2019 also requires the apartment to provide at least 20% of its primary energy usage by means of renewable energy. The reference apartment is exactly the same as the actual apartment albeit with standard basic Part L calculation parameters, U-values/insulation levels, boiler efficiency, controls etc. and has no renewable energy which the new apartment has to improve upon.

4.4 Reduction targets

The following are the reference building or target values.

SINGLE UNIT ELEMENT	UNIT	REFERENCE	TO BE ACHIEVED	FACTOR
Primary Energy	kWh/y	13,122	3,937	0.30
Carbon Dioxide	kg/y	2,684	939	0.35
Renewable energy	kWh/y	0	787	20%

4.5 Building minimum elemental parameters

The following are the main building minimum target values for Part L 2011 and Part L 2019;

Element	Unit	2011	2019
Primary energy	MPEPC *	0.40 - 60%	0.30 - 70%
Carbon emissions	MPCPC *	0.46 - 54%	0.35 - 65%
Renewable energy	RER (%) **	15% (estimated)	> 20%
External walls	U (W/m2K)	0.21	0.18
Windows/glazing	U (W/m2K)	1.60	1.40
Pitched roof horizontal	U (W/m2K)	0.16	0.16
Pitched roof pitched	U (W/m2K)	0.16	0.16
Flat roof	U (W/m2K)	0.20	0.20
Ground floor	U (W/m2K)	0.21	0.18
Cold bridging	U (W/m2K)	0.15 / 0.08	0.15 / 0.08
Air tightness	M3/m2*h	7	5 (3)***
Air testing		Proportionally	All / every one
HRU/MVHR	W/I/s / %	1.5 + 66% efficient	1.2 + 70% efficient
DCV	W/I/s	0.8	0.6

4.6 Reduction hierarchy

- To target the Part L minimum required reductions DKP use the following reduction hierarchy;
- 1) Step 1 Reduce energy usage
- 2) Step 2 Produce energy efficiently
- 3) Step 3 Provide on-site energy.

4.7 Step 1) Reducing energy usage

Energy use reduction is mainly achieved by reducing the actual heat loss of the building by : a - Lowering the heat loss through the floors, walls, roof by increasing the thermal resistance of the elements. b - Lowering the heat loss through the glazed elements by using windows with a higher thermal resistance. c - Lowing the heat loss by using insulated construction joints.

- d Increasing the air tightness to minimise the involuntary air infiltration rate.

The following parameters have applied as a means to achieve compliance.

- Ground floors :
- U = 0.10 0.13 W/m2K
- 120-150mm high density polyurethane foam board (HDPUF) floor insulation, k<=0.022/0.021 W/mK plus 12.5mm high density polyurethane foam board (HDPUF) edge insulation around the perimeter, k<=0.022W/mK

External walls + walls to unheated common spaces: U= 0.12 - 0.14 W/m2K 135 - 160mm partial or full fill cavity high density polyurethane foam board wall insulation, k<=0.022/0.021 W/mK Emissivity factor : <=0.5

Party walls : U= x.x W/m2K where appropriate. Solid plastered or skimmed both sides and sealed on all edges and joints.

Roof :

U= 0.10 - 0.12 W/m2K Flat: 100-125mm high density polyurethane (HDPUF), cold side (roof) insulation, k<=0.022/0.021 W/mK + 50-60mm density polyurethane (HDPUF), warm side insulated plasterboard, k<=0.022/0.021 W/mK

• Window & frame :

U<=1.0 W/m2/K, Double or triple glazed Argon filled insulated frame Solar transmittance 0.55 Light transmittance : 0.72

External door & frame : U = 1.0 W/m2K Insulated solid door or as above.

• Air tightness : Design target 2.5 m3/m2*h Design permeability is set at 2.5 m3/m2*h @ 50Pa or an approximate atmospheric exchange rate of 0.125 ach.

To be achieved with very good workmanship with taped and sealed construction joints and or purpose membrane.

• Cold bridging :

U<=0.06 W/m2K

All construction joints to be insulated. Approved Part L joints as per appendix D. The actual linear coefficient will be applied using the Part L appendix D approved construction details with some (15%) recalculated better insulated joints as listed below using ;

Ventilation.

Demand controlled 24 hour/365 operated central mechanical extract system (no heat recovery) Requires +/- 60% natural ventilation openings typically 4,000mm² per habitable room. 100% permanent. All wet rooms fully ducted from central location typically Ø80mm duct work.

or

Demand controlled 24 hour/365 operated central mechanical supply and extract system (with heat recovery) No natural ventilation opening. Sealed building. All habitable / wet rooms fully ducted typically Ø100mm duct work.

with

Separate manual operated on/off kitchen extract with the 2 options above.

Lighting ;

Low energy lighting. 100%

All lighting point are either LED or compact fluorescent fittings or fittings with LED or compact fluorescent filaments.

Heating / hot-water controls ;

1 no. 2 channel (space heating / hot-water) battery backed programmable time clock with 1 hour boost facility. 1 no. Room thermostat / 2 port control valve.+ thermostatic radiator valves or individual room thermostats. 1 no. Hot water thermostat / 2 port control valve.

• Circulation pumps. Class A Variable speed circulating pump(s)

Avoid. Chimney / open fire, Chimney / biomass stove Biomass stove Gas stove Electric fire

4.8 Step 2 and 3) Provide energy efficiently and provide on-site renewable energy

Energy and renewable energy can be provided in numerous ways. Given the location of the project and its accessibility to grid utilities the following options could be considered for the provision of energy and renewable energy.

Energy and alternative renewable on-site energy source.

a) LTHW (wet) Mains gas condensing system or instantaneous hot-water boiler (η >92%) + 5 PV 400Wp panels, or

- b) LTHW (wet) Mains gas condensing hot-water storage boiler (η >92%) + 4 PV 400Wp panels, or
- c) LTHW (wet) Split or mono block air source heat pump (n heating>540%, n hot-water >245%), or
- d) Electric space heating (dry) + Hot water heat pump (η hot-water >485%) (apartments up to +/- 80m2 only), or

e) A communal form of heating system with any of the above options or a combination of any of the above options.

There are also other possible sources like city district heating networks CDHN, CHP heating networks, on site communal heating with CHP, geothermal heat or waste heat recovery from incineration or other industrial processes to be considered. As there are no city heating net works in close vicinity to the project site a local on-site energy source is to be applied.

CHP is not efficient as the projects base load is not sufficient to maintain viability on a CHP plant. The project, as it is relatively dense, may suit a communal heating system fed by a combination of mains gas boilers and heat pumps however this needs to be economically assessed for viability and if applied does bring the additional requirement of heat energy metering and invoicing to apartment occupiers.

For the report we have applied option c) the air source heat pump.

4.9 Renewable energy

- This means producing on-site renewable energy by using;
- a Thermal solar panels for hot water and/or space heating.
- b Photovoltaic (PV) panels for electrical energy for all electrical requirements.
- c Wind mill(s) for electrical energy for all electrical requirements.
- d Biomass (wood, pellet, chip) plant for hot water and/or space heating.
- e Incinerator(s) for waste heat production f – Heat pump renewable energy.

Given the configuration of the development and the urban location wind power has not been considered. Biomass, although theoretically a good renewable option, has given issue's in other project's with similar use due to maintenance problems with the actual plant giving rise to complaints from occupants / users. PV is generally a good and passive option to be considered.

For this report we have applied option (f) the heat pump renewable fraction. To maintain flexibility from a planning perspective PV panels have been included on the architects drawing allowing for alternative energy / renewable energy solutions.

4.10 Calculation software

Primary energy and carbon dioxide performance calculations are executed using the National Calculation Methodology government approved Domestic Energy Assessment Procedure (DEAP version 4).

4.11 Over heating

Over heating can be an issue and an over heating analysis was conducted using the Passive House PPH analysis software which concluded that the risk to overheating was minimal in accordance to CIBSE TM37. Overheating can also be addressed by applying glass with a higher solar reflection factor or lower emittance factor.

4.12 Calculation results

The table below shows the calculation results from the average size apartment with the average external wall area, glass area, orientation, floor * roof area etc. The table details the reference building primary energy, carbon dioxide and renewable energy data, the required reductions / contributions and what has been achieved using the more advanced building part L parameters from items 4.6 reduction parameters and 4.7 energy & renewable energy options.

SINGLE UNIT

ELEMENT	UNIT	REFERENCE	TOBEACHIEVED	FACTOR	ACHIEVED	FACTOR
Primary Energy	kWh/y	13,122	3,937	0.30	3,412	0.26
Carbon Dioxide	kg/y	2,684	939	0.35	671	0.25
Renewable energy	kWh/y	0	787	20%	1,058	31%

Overall development achievements

ELEMENT	UNIT	BASELINE	ACHIEVED	FACTOR	REDUCTION	%
Primary Energy	kWh/y	3,674,160	955,282	0.26	2,718,878	74.0%
Carbon Dioxide	kg/y	751,520	187,880	0.25	563,640	75.0%
	UNIT	BASELINE	ACHIVED	FACTOR	CONTRIBUTION	%
Renewable energy	kWh/y	0	296,137	31%	842,852	31%

We note the significant reduction in carbon dioxide of 564 ton CO2 per year and the renewable energy contribution of 842,852 kWh per year which is a huge benefit to the global environment

A decision on the final agreed energy supply solution will be made in due time after the proposed systems economical assessment.

4.13 Part L compliance conclusion

Compliance to part L 2019 is achieved by means of a 70% primary energy reduction on the reference dwelling or an EPC (primary energy) of 0.30 or less, a 65% carbon diode reduction or a CPC (carbon dioxide) of 0.35 or less and an equivalent primary renewable energy contribution of 20% or more.

As mentioned in the above sections this can be achieved by a number of methods listed in section 4.8 in combination with proposed passive reduction measures outlined in section 4.7.

• Appendix 2-10 - Phase 2 'The Farm' Energy Statement prepared by DKPartnership

DKPartnership Dublin Cork London T:01-813-1930 T:064-664-1686 E:post@dkpartnership.com

5240

ENERGY ANALYSIS REPORT

ENERGY USE ANALYSIS and PART L COMPLIANCE STATEMENT

Phase 2 - The Farm - Bessborough

Proposed Residential Development

Bessborough, Ballinure, Blackrock, Co. Cork

Estuary View Enterprises 2020 Ltd

DKP document no 5240

Project file no DKP-M88-5240 ¦ 1P 2022-02-21

Document control

DKP project no: M88 DKP document no: 5240 Project file no: DKP-M88-5240

Circular	Issi	ue >	1P#	1P
Clients	Estuary View Enterprises 2020 Ltd		\checkmark	\checkmark
Architects	Shipseybarry Architects		\checkmark	\checkmark
Planning consultants	HW Planning		\checkmark	\checkmark
Landscape architects	Ilsa Rutgers			\checkmark

Issue1P#2022-01-12Draft, for reviewIssue1P2022-02-21For final issue

Document issue status ID

- # Sketch/draft
- P Planning
- C Concept
- D Design
- G General information
- T Tender
- W Works/construction
- Z As-build/constructed

Issue	Prepared	Checked	Approved
1	214	201	201
2	201	201	201
3			

ING Gerard (Craig) van Deventer CEng., BE(mech)., HDip CIOB, MCIBSE

M : [00] 353 (0)87 260 8080

E : gerard@dkpartnership.com

DKPartnership 70 Main Street, Applewood , Swords, Co. Dublin, Ireland Reen Kenmare Co. Kerry

post@dkpartnership.com www.dkpartnership.com

T : [00] 353 (0) 1813 1930 T : [00] 353 (0)64664 1686

Contents

Sectio

Section		Page
1	Introduction	4
2	Executive summary	5
3	Geographical project overview	6
4	Approach, methodology and calculation results	7

1 Introduction

1.1 Report purpose

This report gives information on the projects energy status and carbon dioxide emissions, the statutory compliance requirements and energy/CO2 reduction achievements based on the proposed building / construction specifications.

1.2

1.3 Instruction

DKPartnership (DKP) have been commissioned by Estuary View Enterprises 2020 Ltd, to carry out the analysis and report for the proposed development at Bessborough, Co. Cork.

1.4 Development description

The development consists of 140 build to sell apartments, associated supporting uses, a 25 child creche facility, communal open space areas, landscaping, surface car parking spaces, bicycle parking spaces, bin stores, public lighting and all ancillary site development works. The development also consists of the demolition of selected farm buildings and the refurbishment and incorporation of existing buildings on site. The development is arranged around 5 new blocks ,Builds A,B,C, D & E with buildings A ,B & C located in a parkland setting while buildings D & E located around the former farmyard area. A central landscape area forms the main communal spaces to the scheme.

1.5 Policy and building regulation requirements.

The project is subject to the following statutory and policy energy usage and CO2 emission target requirements: TGD Part L 2019 for the residential element and Part L 2017 for the non residential element.

1.6 Approach

The energy usage and carbon emissions are calculated using the DEAP software and approached using the basic DKP energy reduction steps in the following order :

- a) Reduce energy usage
- b) Produce energy efficiently
- c) Provide on-site energy

2 Executive summary

2.1 Analysis conducted

In this report the primary energy usage and carbon dioxide emissions have been analysed to provide an energy efficient building in compliance with the current standards and regulations.

2.2 Policy and building regulations applied

Given its time frame currently known the new development's requires compliance (energy) to Part L 2019 for the residential element and Part L 2017 for the non residential element . Compliance to both the above noted Part L would deem the development and developments residential units to be "Nearly Zero Energy Buildings" (NZEB) in accordance to the EU Energy performance of Buildings Directive Recast 2013/31/EU.

2.3 Calculation data and targets

For the purpose of this report as the residential element dominates the few non residential facilities the calculation data provided in the tables below is based on Part L 2019 and covers the main criteria ; a) Primary energy, b) Carbon dioxide, c) Renewable energy. The calculation data given is the average residential unit size, occupation, configuration, orientation, etc. To comply to Part L the residential unit(s) requires to achieve a primary energy reduction of 70% (0.30 MEPC factor), a carbon emission reduction of 65% (0.35 MCPC factor) and a 20% renewable energy contribution on the reference residential unit. The reference residential unit is the proposed residential unit but by the SEIA stipulated standard (poorer) Part L calculation parameters, U-values/insulation levels, boiler efficiency, controls etc. The table below represents the reference residential unit data, the to be achieved data and the current achieved data of the average residential type across the development using the applied reduction measures and technologies listed in section 4.

In essence passive reduction measures and on-site produced renewable energy are most beneficial as they are a permanent reduction measures and alternative energy supply combatting not only the global climate change but also the inflation on energy cost.

SINGLE UNIT ELEMENT	UNIT	REFERENCE	TOBEACHIEVED	FACTOR	ACHIEVED	FACTOR
Primary Energy	kWh/y	14,298	4,289	0.30	3,717	0.26
Carbon Dioxide	kg/y	2,928	1,025	0.35	732	0.25
Renewable energy	kWh/y	0	858	20%	1,227	33%

Overall development achieven Number of residential units : ELEMENT	nents 140 UNIT	BASE LINE	ACHIEVED	FACTOR	REDUCTION	%
Primary Energy	kWh/y	2,001,720	520,447	0.26	1,481,273	74.0%
Carbon Dioxide	kg/y	409,920	102,480	0.25	307,440	75.0%
	UNIT	BASELINE	ACHIVED	FACTOR	CONTRIBUTION	%
Renewable energy	kWh/y	0	171,748	33%	488,820	33%

We note the significant reduction in carbon dioxide of 307 ton CO2 per year and the renewable energy contribution of 488,820 kWh per year which is a huge benefit to the global environment

We note that for this report we have applied the air source heat pump option for the calculation results and TGD Part L compliance. However whereas PV panels are not a requirement with the air source heat pump option they have been shown on the roofs of buildings on the architects drawings to allow for flexibility from a planning perspective in the case that alternative energy / renewable energy solutions are to be considered.

2.4 Policy and building regulation compliance overview

The table below summarises the requirements of Part L for primary energy, CO2 and renewable energy;

POLICY/REGULATION	REQUIREMENT	ACHIEVEMENTS
Primary Energy	To achieve a primary energy reduction factor (EPC) of 0.30 or less over the 2019 energy reference building.	An EPC of 0.26 was achieved which is lower then the maximum MEPC of 0.30 and is therefore compliant.
Carbon Dioxide	To achieve carbon dioxide emission reduction factor of 0.35 or less over the 2019 energy reference building.	An CPC of 0.25 was achieved which is lower then the maximum MCPC of 0.35 and is therefore compliant.
Renewable energy	To achieve at least a 20% renewable primary energy equivalent contribution.	An overall contribution of (primary energy) renewable energy of 44% was achieved with the heat pump renewable energy element.

2.5 Conclusion

Compliance to part L 2019 was achieved using proposed measures achieving a primary energy reduction in excess of the minimum required a 70%, a carbon dioxide reduction in excess of the minimum required 65% and an equivalent primary renewable energy contribution in excess of 20%. As mentioned compliance could also be achieved by a number of other methods listed in section 4.8 in combination with proposed passive reduction measures outlined in section 4.7.

2.6 Mitigation measures / actions

There are no mitigation measures anticipated.

3 Geographical overview

3.1 Project overview

Image 3.1, the (google maps) site map below is a basic overview of the site with proposed development approximately outlined in the area site map.

Image 3.1: approximate proposed phase 2 (Farm) development site area outlined

4 Approach, methodology and calculation results

4.1 General approach

The target of the building's energy usage and carbon dioxide emissions is to comply to the current building regulations and to design the building and building services in line with the "Nearly Zero Energy Building" energy policy adapted in Part L 2019. Calculations have been conducted on all the developments apartment units with the given data in this report representing the averages across all of the 140 no units with the average unit size to be 62m2. The average unit (size) has been applied for these initial Part L calculations.

4.2 Building regulations requirements

Building regulation (residential) Part L: 2019 or any subsequent editions current at the time of completion.

4.3 Part L 2019 general approach

Part L requires a new apartment to make primary energy and carbon dioxide emission reductions on a reference apartment by applying improved calculation parameters and technologies.

Part L also requires the apartment to provide at least 20% of its primary energy usage by means of renewable energy.

The reference apartment is exactly the same as the actual apartment albeit with standard basic Part L calculation parameters, U-values/insulation levels, boiler efficiency, controls etc. and has no renewable energy which the new apartment has to improve upon.

4.4 Reduction targets

The following are the reference building or target values.

SINGLE UNIT				
ELEMENT	UNIT	REFERENCE	TOBEACHIEVED	FACTOR
Primary Energy	kWh/y	14,298	4,289	0.30
Carbon Dioxide	kg/y	2,928	1,025	0.35
Renewable energy	kWh/y	0	858	20%

4.5 Building minimum elemental parameters

The following are the main building minimum target values for Part L 2011 and Part L 2019;

Element	Unit	2011	2019
Primary energy	MPEPC *	0.40 - 60%	0.30 - 70%
Carbon emissions	MPCPC *	0.46 - 54%	0.35 - 65%
Renewable energy	RER (%) **	15% (estimated)	> 20%
External walls	U (W/m2K)	0.21	0.18
Windows/glazing	U (W/m2K)	1.60	1.40
Pitched roof horizontal	U (W/m2K)	0.16	0.16
Pitched roof pitched	U (W/m2K)	0.16	0.16
Flat roof	U (W/m2K)	0.20	0.20
Ground floor	U (W/m2K)	0.21	0.18
Cold bridging	U (W/m2K)	0.15 / 0.08	0.15 / 0.08
Air tightness	M3/m2*h	7	5 (3)***
Air testing		Proportionally	All / every one
HRU/MVHR	W/I/s / %	1.5 + 66% efficient	1.2 + 70% efficient
DCV	W/I/s	0.8	0.6

4.6 Reduction hierarchy

- To target the Part L minimum required reductions DKP use the following reduction hierarchy ;
- 1) Step 1 Reduce energy usage
- 2) Step 2 Produce energy efficiently
- 3) Step 3 Provide on-site energy.

4.7 Step 1) Reducing energy usage

Energy use reduction is mainly achieved by reducing the actual heat loss of the building by : a - Lowering the heat loss through the floors, walls, roof by increasing the thermal resistance of the elements. b - Lowering the heat loss through the glazed elements by using windows with a higher thermal resistance. c - Lowing the heat loss by using insulated construction joints.

- d Increasing the air tightness to minimise the involuntary air infiltration rate.

The following parameters have applied as a means to achieve compliance.

- Ground floors :
- U = 0.10 0.13 W/m2K
- 120-150mm high density polyurethane foam board (HDPUF) floor insulation, k<=0.022/0.021 W/mK plus 12.5mm high density polyurethane foam board (HDPUF) edge insulation around the perimeter, k<=0.022W/mK

External walls + walls to unheated common spaces: U= 0.12 - 0.14 W/m2K 135 - 160mm partial or full fill cavity high density polyurethane foam board wall insulation, k<=0.022/0.021 W/mK Emissivity factor : <=0.5

Party walls : U= x.x W/m2K where appropriate. Solid plastered or skimmed both sides and sealed on all edges and joints.

Roof :

U= 0.10 - 0.12 W/m2K Flat: 100-125mm high density polyurethane (HDPUF), cold side (roof) insulation, k<=0.022/0.021 W/mK + 50-60mm density polyurethane (HDPUF), warm side insulated plasterboard, k<=0.022/0.021 W/mK

• Window & frame : U<=1.0 W/m2/K, Double or triple glazed Argon filled insulated frame Solar transmittance 0.55 Light transmittance : 0.72

External door & frame : U = 1.0 W/m2K Insulated solid door or as above.

• Air tightness : Design target 2.5 m3/m2*h Design permeability is set at 2.5 m3/m2*h @ 50Pa or an approximate atmospheric exchange rate of 0.125 ach. To be achieved with very good workmanship with taped and sealed construction joints and or purpose membrane.

• Cold bridging :

U<=0.06 W/m2K

All construction joints to be insulated. Approved Part L joints as per appendix D. The actual linear coefficient will be applied using the Part L appendix D approved construction details with some (15%) recalculated better insulated joints as listed below using ;

Ventilation.

Demand controlled 24 hour/365 operated central mechanical extract system (no heat recovery) Requires +/- 60% natural ventilation openings typically 4,000mm² per habitable room. 100% permanent. All wet rooms fully ducted from central location typically Ø80mm duct work.

or

Demand controlled 24 hour/365 operated central mechanical supply and extract system (with heat recovery) No natural ventilation opening. Sealed building. All habitable / wet rooms fully ducted typically Ø100mm duct work.

with

Separate manual operated on/off kitchen extract with the 2 options above.

Lighting ;

Low energy lighting. 100%

All lighting point are either LED or compact fluorescent fittings or fittings with LED or compact fluorescent filaments.

Heating / hot-water controls ;

1 no. 2 channel (space heating / hot-water) battery backed programmable time clock with 1 hour boost facility. 1 no. Room thermostat / 2 port control valve.+ thermostatic radiator valves or individual room thermostats. 1 no. Hot water thermostat / 2 port control valve.

• Circulation pumps. Class A Variable speed circulating pump(s)

 Avoid. Chimney / open fire, Chimney / biomass stove Biomass stove Gas stove Electric fire

4.8 Step 2 and 3) Provide energy efficiently and provide on-site renewable energy

Energy and renewable energy can be provided in numerous ways.

Given the location of the project and its accessibility to grid utilities the following options could be considered for the provision of energy and renewable energy.

Energy and alternative renewable on-site energy source.

a) LTHW (wet) Mains gas condensing system or instantaneous hot-water boiler (η >92%) + 5 PV 400Wp panels, or

- b) LTHW (wet) Mains gas condensing hot-water storage boiler (η >92%) + 4 PV 400Wp panels, or
- c) LTHW (wet) Split or mono block air source heat pump (n heating>540%, n hot-water >245%), or
- d) Electric space heating (dry) + Hot water heat pump (η hot-water >485%) (apartments up to +/- 80m2 only), or

e) A communal form of heating system with any of the above options or a combination of any of the above options.

There are also other possible sources like city district heating networks CDHN, CHP heating networks, on site communal heating with CHP, geothermal heat or waste heat recovery from incineration or other industrial processes to be considered. As there are no city heating net works in close vicinity to the project site a local on-site energy source is to be applied.

CHP is not efficient as the projects base load is not sufficient to maintain viability on a CHP plant. The project, as it is relatively dense, may suit a communal heating system fed by a combination of mains gas boilers and heat pumps however this needs to be economically assessed for viability and if applied does bring the additional requirement of heat energy metering and invoicing to apartment occupiers.

For the report we have applied option c) the air source heat pump.

4.9 Renewable energy

- This means producing on-site renewable energy by using;
- a Thermal solar panels for hot water and/or space heating.
- b Photovoltaic (PV) panels for electrical energy for all electrical requirements.
- c Wind mill(s) for electrical energy for all electrical requirements.
- d Biomass (wood, pellet, chip) plant for hot water and/or space heating.
- e Incinerator(s) for waste heat production
- f Heat pump renewable energy.

Given the configuration of the development and the urban location wind power has not been considered. Biomass, although theoretically a good renewable option, has given issue's in other project's with similar use due to maintenance problems with the actual plant giving rise to complaints from occupants / users. PV is generally a good and passive option to be considered.

For this report we have applied option (f) the heat pump renewable fraction. To maintain flexibility from a planning perspective PV panels have been included on the architects drawing allowing for alternative energy / renewable energy solutions.

4.10 Calculation software

Primary energy and carbon dioxide performance calculations are executed using the National Calculation Methodology government approved Domestic Energy Assessment Procedure (DEAP version 4).

4.11 Over heating

Over heating can be an issue and an over heating analysis was conducted using the Passive House PPH analysis software which concluded that the risk to overheating was minimal in accordance to CIBSE TM37. Overheating can also be addressed by applying glass with a higher solar reflection factor or lower emittance factor.

4.12 Calculation results

The table below shows the calculation results from the average size apartment with the average external wall area, glass area, orientation, floor * roof area etc. The table details the reference building primary energy, carbon dioxide and renewable energy data, the required reductions / contributions and what has been achieved using the more advanced building part L parameters from items 4.6 reduction parameters and 4.7 energy & renewable energy options.

SINGLE UNIT

ELEMENT	UNIT	REFERENCE	TOBEACHIEVED	FACTOR	ACHIEVED	FACTOR
Primary Energy	kWh/y	14,298	4,289	0.30	3,717	0.26
Carbon Dioxide	kg/y	2,928	1,025	0.35	732	0.25
Renewable energy	kWh/y	0	858	20%	1,227	33%

Overall development achievements

ELEMENT	1 40 UNIT	BASELINE	ACHIEVED	FACTOR	REDUCTION	%
Primary Energy	kWh/y	2,001,720	520,447	0.26	1,481,273	74.0%
Carbon Dioxide	kg/y	409,920	102,480	0.25	307,440	75.0%
	UNIT	BASELINE	ACHIVED	FACTOR	CONTRIBUTION	%
Renewable energy	kWh/y	0	171,748	33%	488,820	33%

We note the significant reduction in carbon dioxide of 307 ton CO2 per year and the renewable energy contribution of 488,820 kWh per year which is a huge benefit to the global environment

A decision on the final agreed energy supply solution will be made in due time after the proposed systems economical assessment.

4.13 Part L compliance conclusion

Compliance to part L 2019 is achieved by means of a 70% primary energy reduction on the reference dwelling or an EPC (primary energy) of 0.30 or less, a 65% carbon diode reduction or a CPC (carbon dioxide) of 0.35 or less and an equivalent primary renewable energy contribution of 20% or more.

As mentioned in the above sections this can be achieved by a number of methods listed in section 4.8 in combination with proposed passive reduction measures outlined in section 4.7.